BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 8890740)

  • 1. Increased production of peptide deformylase eliminates retention of formylmethionine in bovine somatotropin overproduced in Escherichia coli.
    Warren WC; Bentle KA; Schlittler MR; Schwane AC; O'Neil JP; Bogosian G
    Gene; 1996 Oct; 174(2):235-8. PubMed ID: 8890740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Escherichia coli methionyl-tRNA formyltransferase in Saccharomyces cerevisiae leads to formylation of the cytoplasmic initiator tRNA and possibly to initiation of protein synthesis with formylmethionine.
    Ramesh V; Köhrer C; RajBhandary UL
    Mol Cell Biol; 2002 Aug; 22(15):5434-42. PubMed ID: 12101237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a human peptide deformylase: implications for antibacterial drug design.
    Nguyen KT; Hu X; Colton C; Chakrabarti R; Zhu MX; Pei D
    Biochemistry; 2003 Aug; 42(33):9952-8. PubMed ID: 12924944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased peptide deformylase activity for N-formylmethionine processing of proteins overexpressed in Escherichia coli: application to homogeneous rubredoxin production.
    Tang J; Hernández G; LeMaster DM
    Protein Expr Purif; 2004 Jul; 36(1):100-5. PubMed ID: 15177290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of N-formylated proteins in Escherichia coli.
    Spector S; Flynn JM; Tidor B; Baker TA; Sauer RT
    Protein Expr Purif; 2003 Dec; 32(2):317-22. PubMed ID: 14965779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformylation of nascent peptide chains on the ribosome.
    Bögeholz LAK; Mercier E; Wintermeyer W; Rodnina MV
    Methods Enzymol; 2023; 684():39-70. PubMed ID: 37230593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide deformylase as an antibacterial drug target: target validation and resistance development.
    Apfel CM; Locher H; Evers S; Takács B; Hubschwerlen C; Pirson W; Page MG; Keck W
    Antimicrob Agents Chemother; 2001 Apr; 45(4):1058-64. PubMed ID: 11257016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum.
    Bracchi-Ricard V; Nguyen KT; Zhou Y; Rajagopalan PT; Chakrabarti D; Pei D
    Arch Biochem Biophys; 2001 Dec; 396(2):162-70. PubMed ID: 11747293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening combinatorial libraries for optimal enzyme substrates by mass spectrometry.
    Wang P; Snavley DF; Freitas MA; Pei D
    Rapid Commun Mass Spectrom; 2001; 15(14):1166-71. PubMed ID: 11445898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of substrate specificity for peptide deformylase through the screening of a combinatorial peptide library.
    Hu YJ; Wei Y; Zhou Y; Rajagopalan PT; Pei D
    Biochemistry; 1999 Jan; 38(2):643-50. PubMed ID: 9888804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation.
    Mazel D; Pochet S; Marlière P
    EMBO J; 1994 Feb; 13(4):914-23. PubMed ID: 8112305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine as translation start signal: a review of the enzymes of the pathway in Escherichia coli.
    Meinnel T; Mechulam Y; Blanquet S
    Biochimie; 1993; 75(12):1061-75. PubMed ID: 8199241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic control of nascent protein biogenesis by peptide deformylase.
    Bögeholz LAK; Mercier E; Wintermeyer W; Rodnina MV
    Sci Rep; 2021 Dec; 11(1):24457. PubMed ID: 34961771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification, characterization, and inhibition of peptide deformylase from Escherichia coli.
    Rajagopalan PT; Datta A; Pei D
    Biochemistry; 1997 Nov; 36(45):13910-8. PubMed ID: 9374870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide deformylase as an antibacterial drug target: assays for detection of its inhibition in Escherichia coli cell homogenates and intact cells.
    Apfel CM; Evers S; Hubschwerlen C; Pirson W; Page MG; Keck W
    Antimicrob Agents Chemother; 2001 Apr; 45(4):1053-7. PubMed ID: 11257015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133.
    Rajagopalan PT; Grimme S; Pei D
    Biochemistry; 2000 Feb; 39(4):779-90. PubMed ID: 10651644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that peptide deformylase and methionyl-tRNA(fMet) formyltransferase are encoded within the same operon in Escherichia coli.
    Meinnel T; Blanquet S
    J Bacteriol; 1993 Dec; 175(23):7737-40. PubMed ID: 8244948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and use of E. coli peptide deformylase for peptide deprotection in chemoenzymatic peptide synthesis.
    Di Toma C; Sonke T; Quaedflieg PJ; Volker Wagner AF; Janssen DB
    Protein Expr Purif; 2013 May; 89(1):73-9. PubMed ID: 23357810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for the design of antibiotics targeting peptide deformylase.
    Hao B; Gong W; Rajagopalan PT; Zhou Y; Pei D; Chan MK
    Biochemistry; 1999 Apr; 38(15):4712-9. PubMed ID: 10200158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.