BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 8890909)

  • 1. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec).
    Amberg R; Mizutani T; Wu XQ; Gross HJ
    J Mol Biol; 1996 Oct; 263(1):8-19. PubMed ID: 8890909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of selenocysteine-inserting tRNA(Sec) from Escherichia coli. Comparison with canonical tRNA(Ser).
    Baron C; Westhof E; Böck A; Giegé R
    J Mol Biol; 1993 May; 231(2):274-92. PubMed ID: 8510147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the tertiary interactions in the eukaryotic selenocysteine tRNA.
    Ioudovitch A; Steinberg SV
    RNA; 1998 Apr; 4(4):365-73. PubMed ID: 9630244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm.
    Ohama T; Yang DC; Hatfield DL
    Arch Biochem Biophys; 1994 Dec; 315(2):293-301. PubMed ID: 7986071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The long extra arms of human tRNA((Ser)Sec) and tRNA(Ser) function as major identify elements for serylation in an orientation-dependent, but not sequence-specific manner.
    Wu XQ; Gross HJ
    Nucleic Acids Res; 1993 Dec; 21(24):5589-94. PubMed ID: 8284203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The length and the secondary structure of the D-stem of human selenocysteine tRNA are the major identity determinants for serine phosphorylation.
    Wu XQ; Gross HJ
    EMBO J; 1994 Jan; 13(1):241-8. PubMed ID: 8306966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superposition of a tRNASer acceptor stem microhelix into the seryl-tRNA synthetase complex.
    Förster C; Brauer AB; Fürste JP; Betzel Ch; Weber M; Cordes F; Erdmann VA
    Biochem Biophys Res Commun; 2007 Oct; 362(2):415-8. PubMed ID: 17719008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dual identities of mammalian tRNA(Sec) for SerRS and selenocysteine synthase.
    Mizutani T; Kanaya K; Ikeda S; Fujiwara T; Yamada K; Totsuka T
    Mol Biol Rep; 1998 Nov; 25(4):211-6. PubMed ID: 9870610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal tRNA(Ser) and tRNA(Sec) substrates for human seryl-tRNA synthetase: contribution of tRNA domains to serylation and tertiary structure.
    Heckl M; Busch K; Gross HJ
    FEBS Lett; 1998 May; 427(3):315-9. PubMed ID: 9637248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the major role of O-phosphoseryl-tRNA kinase in the UGA-specific encoding of selenocysteine.
    Chiba S; Itoh Y; Sekine S; Yokoyama S
    Mol Cell; 2010 Aug; 39(3):410-20. PubMed ID: 20705242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Divergence of selenocysteine tRNA recognition by archaeal and eukaryotic O-phosphoseryl-tRNASec kinase.
    Sherrer RL; Ho JM; Söll D
    Nucleic Acids Res; 2008 Apr; 36(6):1871-80. PubMed ID: 18267971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenocysteylation in eukaryotes necessitates the uniquely long aminoacyl acceptor stem of selenocysteine tRNA(Sec).
    Sturchler-Pierrat C; Hubert N; Totsuka T; Mizutani T; Carbon P; Krol A
    J Biol Chem; 1995 Aug; 270(31):18570-4. PubMed ID: 7629188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional investigation of a putative archaeal selenocysteine synthase.
    Kaiser JT; Gromadski K; Rother M; Engelhardt H; Rodnina MV; Wahl MC
    Biochemistry; 2005 Oct; 44(40):13315-27. PubMed ID: 16201757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro.
    Himeno H; Yoshida S; Soma A; Nishikawa K
    J Mol Biol; 1997 May; 268(4):704-11. PubMed ID: 9175855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. tRNA leucine identity and recognition sets.
    Tocchini-Valentini G; Saks ME; Abelson J
    J Mol Biol; 2000 May; 298(5):779-93. PubMed ID: 10801348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of selenocysteine on its tRNA in eukaryotes.
    Xu XM; Carlson BA; Mix H; Zhang Y; Saira K; Glass RS; Berry MJ; Gladyshev VN; Hatfield DL
    PLoS Biol; 2007 Jan; 5(1):e4. PubMed ID: 17194211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The length of the aminoacyl-acceptor stem of the selenocysteine-specific tRNA(Sec) of Escherichia coli is the determinant for binding to elongation factors SELB or Tu.
    Baron C; Böck A
    J Biol Chem; 1991 Oct; 266(30):20375-9. PubMed ID: 1939093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination among E. coli tRNAs with a long variable arm.
    Asahara H; Himeno H; Tamura K; Nameki N; Hasegawa T; Shimizu M
    Nucleic Acids Symp Ser; 1993; (29):207-8. PubMed ID: 7504246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural compensation in an archaeal selenocysteine transfer RNA.
    Ioudovitch A; Steinberg SV
    J Mol Biol; 1999 Jul; 290(2):365-71. PubMed ID: 10390336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.