These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 8890914)
21. Active site similarities of glucose dehydrogenase, glucose oxidase, and glucoamylase probed by deoxygenated substrates. Sierks MR; Bock K; Refn S; Svensson B Biochemistry; 1992 Sep; 31(37):8972-7. PubMed ID: 1390684 [TBL] [Abstract][Full Text] [Related]
22. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori. Natarajan S; Sierks MR Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145 [TBL] [Abstract][Full Text] [Related]
23. Mutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49-->Trp, Tyr116-->Trp, Tyr175-->Phe, Arg241-->Lys, Ser411-->Ala and Ser411-->Gly. Fang TY; Coutinho PM; Reilly PJ; Ford C Protein Eng; 1998 Feb; 11(2):119-26. PubMed ID: 9605546 [TBL] [Abstract][Full Text] [Related]
24. The strength of dehalogenase-substrate hydrogen bonding correlates with the rate of Meisenheimer intermediate formation. Dong J; Lu X; Wei Y; Luo L; Dunaway-Mariano D; Carey PR Biochemistry; 2003 Aug; 42(31):9482-90. PubMed ID: 12899635 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of 2-deoxy-glucooligosaccharides through condensation of 2-deoxy-D-glucose by glucoamylase and alpha-glucosidase. Nakano H; Hamayasu K; Fujita K; Hara K; Ohi M; Yoshizumi H; Kitahata S Biosci Biotechnol Biochem; 1995 Sep; 59(9):1732-6. PubMed ID: 8520115 [TBL] [Abstract][Full Text] [Related]
26. Thermodynamics of binding of heterobidentate ligands consisting of spacer-connected acarbose and beta-cyclodextrin to the catalytic and starch-binding domains of glucoamylase from Aspergillus niger shows that the catalytic and starch-binding sites are in close proximity in space. Sigurskjold BW; Christensen T; Payre N; Cottaz S; Driguez H; Svensson B Biochemistry; 1998 Jul; 37(29):10446-52. PubMed ID: 9671514 [TBL] [Abstract][Full Text] [Related]
27. Minimizing nonproductive substrate binding: a new look at glucoamylase subsite affinities. Natarajan SK; Sierks MR Biochemistry; 1997 Dec; 36(48):14946-55. PubMed ID: 9398219 [TBL] [Abstract][Full Text] [Related]
28. Complementary truncations of a hydrogen bond to ribose involved in transition-state stabilization by cytidine deaminase. Carlow DC; Short SA; Wolfenden R Biochemistry; 1998 Feb; 37(5):1199-203. PubMed ID: 9477944 [TBL] [Abstract][Full Text] [Related]
29. Steady-state inhibitory kinetic studies on the ligand binding modes of Aspergillus niger glucoamylase. Tanaka A; Ohya M; Yamamoto T; Nakagawa C; Tsuji T; Senoo K; Obata H Biosci Biotechnol Biochem; 1999 Sep; 63(9):1548-52. PubMed ID: 10540741 [TBL] [Abstract][Full Text] [Related]
30. Transition state stabilization and substrate strain in enzyme catalysis: ab initio QM/MM modelling of the chorismate mutase reaction. Ranaghan KE; Ridder L; Szefczyk B; Sokalski WA; Hermann JC; Mulholland AJ Org Biomol Chem; 2004 Apr; 2(7):968-80. PubMed ID: 15034619 [TBL] [Abstract][Full Text] [Related]
31. Mechanism of Bacillus 1,3-1,4-beta-D-glucan 4-glucanohydrolases: kinetics and pH studies with 4-methylumbelliferyl beta-D-glucan oligosaccharides. Malet C; Planas A Biochemistry; 1997 Nov; 36(45):13838-48. PubMed ID: 9374861 [TBL] [Abstract][Full Text] [Related]
32. Physicochemical characterisation of the two active site mutants Trp(52)-->Phe and Asp(55)-->Val of glucoamylase from Aspergillus niger. Christensen T; Frandsen TP; Kaarsholm NC; Svensson B; Sigurskjold BW Biochim Biophys Acta; 2002 Dec; 1601(2):163-71. PubMed ID: 12445478 [TBL] [Abstract][Full Text] [Related]
33. Roles of individual enzyme-substrate interactions by alpha-1,3-galactosyltransferase in catalysis and specificity. Zhang Y; Swaminathan GJ; Deshpande A; Boix E; Natesh R; Xie Z; Acharya KR; Brew K Biochemistry; 2003 Nov; 42(46):13512-21. PubMed ID: 14621997 [TBL] [Abstract][Full Text] [Related]
34. Di- and oligosaccharide substrate specificities and subsite binding energies of pig intestinal glucoamylase-maltase. Günther S; Heymann H Arch Biochem Biophys; 1998 Jun; 354(1):111-6. PubMed ID: 9633604 [TBL] [Abstract][Full Text] [Related]
35. Role of non-covalent enzyme-substrate interactions in the reaction catalysed by cellobiose phosphorylase from Cellulomonas uda. Nidetzky B; Eis C; Albert M Biochem J; 2000 Nov; 351 Pt 3(Pt 3):649-59. PubMed ID: 11042119 [TBL] [Abstract][Full Text] [Related]
36. Hydration change during the aging of phosphorylated human butyrylcholinesterase: importance of residues aspartate-70 and glutamate-197 in the water network as probed by hydrostatic and osmotic pressures. Masson P; Cléry C; Guerra P; Redslob A; Albaret C; Fortier PL Biochem J; 1999 Oct; 343 Pt 2(Pt 2):361-9. PubMed ID: 10510301 [TBL] [Abstract][Full Text] [Related]
37. Identification and elimination by site-directed mutagenesis of thermolabile aspartyl bonds in Aspergillus awamori glucoamylase. Chen HM; Ford C; Reilly PJ Protein Eng; 1995 Jun; 8(6):575-82. PubMed ID: 8532682 [TBL] [Abstract][Full Text] [Related]
38. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy. Wu J; Bell AF; Luo L; Stephens AW; Stankovich MT; Tonge PJ Biochemistry; 2003 Oct; 42(40):11846-56. PubMed ID: 14529297 [TBL] [Abstract][Full Text] [Related]
39. Kinetic identification of a hydrogen bonding pair in the glucoamylase-maltose transition state complex. Sierks MR; Svensson B Protein Eng; 1992 Mar; 5(2):185-8. PubMed ID: 1350675 [TBL] [Abstract][Full Text] [Related]
40. Site-directed mutagenesis at the active site Trp120 of Aspergillus awamori glucoamylase. Sierks MR; Ford C; Reilly PJ; Svensson B Protein Eng; 1989 Aug; 2(8):621-5. PubMed ID: 2510150 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]