BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 8891260)

  • 1. Neurones in the midbrain periaqueductal grey send collateral projections to nucleus raphe magnus and the rostral ventrolateral medulla in the rat.
    Hudson PM; Lumb BM
    Brain Res; 1996 Sep; 733(1):138-41. PubMed ID: 8891260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collateralization of periaqueductal gray neurons to forebrain or diencephalon and to the medullary nucleus raphe magnus in the rat.
    Reichling DB; Basbaum AI
    Neuroscience; 1991; 42(1):183-200. PubMed ID: 1713655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collateral projections from the midbrain periaqueductal gray to the nucleus raphe magnus and nucleus accumbens in the rat. A fluorescent retrograde double-labelling study.
    Li YQ; Rao ZR; Shi JW
    Neurosci Lett; 1990 Sep; 117(3):285-8. PubMed ID: 1710039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The inhibitory effect of the ventrolateral periaqueductal grey matter on neurones in the rostral ventrolateral medulla involves a relay in the medullary raphe nuclei.
    Wang WH; Lovick TA
    Exp Brain Res; 1993; 94(2):295-300. PubMed ID: 8359247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitatory projections from the anterior hypothalamus to periaqueductal gray neurons that project to the medulla: a functional anatomical study.
    Semenenko FM; Lumb BM
    Neuroscience; 1999; 94(1):163-74. PubMed ID: 10613506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periaqueductal gray matter input to cardiac-related sympathetic premotor neurons.
    Farkas E; Jansen AS; Loewy AD
    Brain Res; 1998 May; 792(2):179-92. PubMed ID: 9593884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus.
    Reichling DB; Basbaum AI
    J Comp Neurol; 1990 Dec; 302(2):370-7. PubMed ID: 2289975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of neurones in the medullary raphe nuclei to inputs from visceral nociceptors and the ventrolateral periaqueductal grey in the rat.
    Snowball RK; Dampney RA; Lumb BM
    Exp Physiol; 1997 May; 82(3):485-500. PubMed ID: 9179568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Projections from nucleus raphe obscurus to the periaqueductal grey matter in the rat.
    Semenenko FM; Lumb BM; Lovick TA; Semenenka FM
    Neurosci Lett; 1994 Mar; 170(1):9-12. PubMed ID: 7999147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subregions of the periaqueductal gray topographically innervate the rostral ventral medulla in the rat.
    Van Bockstaele EJ; Aston-Jones G; Pieribone VA; Ennis M; Shipley MT
    J Comp Neurol; 1991 Jul; 309(3):305-27. PubMed ID: 1717516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrastructural morphometric analysis of GABA-immunoreactive terminals in the ventrocaudal periaqueductal grey: analysis of the relationship of GABA terminals and the GABAA receptor to periaqueductal grey-raphe magnus projection neurons.
    Williams FG; Beitz AJ
    J Neurocytol; 1990 Oct; 19(5):686-96. PubMed ID: 1706415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collateralized projections from neurons in the rostral medulla to the nucleus locus coeruleus, the nucleus of the solitary tract and the periaqueductal gray.
    Van Bockstaele EJ; Aston-Jones G
    Neuroscience; 1992 Aug; 49(3):653-68. PubMed ID: 1380136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections from serotonin- and substance P-like immunoreactive neurons in the midbrain periaqueductal gray onto the nucleus reticularis gigantocellularis pars alpha in the rat.
    Zeng SL; Li YQ; Rao ZR; Shi JW
    Neurosci Lett; 1991 Oct; 131(2):205-9. PubMed ID: 1722297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the nucleus raphe obscurus in the inhibition of rostral ventrolateral medullary neurones induced by stimulation in the ventrolateral periaqueductal grey matter of the rabbit.
    Zhang YM; Li P; Lovick TA
    Neurosci Lett; 1994 Aug; 176(2):231-4. PubMed ID: 7830953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA; Basbaum AI
    J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Midbrain influences on ventrolateral medullo-spinal neurones in the rat.
    Lovick TA
    Exp Brain Res; 1992; 90(1):147-52. PubMed ID: 1521603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei.
    Bago M; Marson L; Dean C
    Brain Res; 2002 Aug; 945(2):249-58. PubMed ID: 12126887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collateral projections of nucleus raphe dorsalis neurones to the caudate-putamen and region around the nucleus raphe magnus and nucleus reticularis gigantocellularis pars alpha in the rat.
    Li YQ; Kaneko T; Mizuno N
    Neurosci Lett; 2001 Feb; 299(1-2):33-6. PubMed ID: 11166931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serotonergic projections from the midbrain periaqueductal gray and nucleus raphe dorsalis to the nucleus parafascicularis of the thalamus.
    Chen J; Zeng SL; Rao ZR; Shi JW
    Brain Res; 1992 Jul; 584(1-2):294-8. PubMed ID: 1515946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ultrastructural study of the projections from the midbrain periaqueductal gray to spinally projecting, serotonin-immunoreactive neurons of the medullary nucleus raphe magnus in the rat.
    Lakos S; Basbaum AI
    Brain Res; 1988 Mar; 443(1-2):383-8. PubMed ID: 3282614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.