BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 8891637)

  • 1. Serotonergic modulation of the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Greer JJ; Stein RB
    Exp Brain Res; 1996 Sep; 111(1):57-67. PubMed ID: 8891637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro.
    Jovanović K; Petrov T; Stein RB
    Exp Brain Res; 1999 Nov; 129(2):172-84. PubMed ID: 10591891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cholinergic and noradrenergic agents on locomotion in the mudpuppy (Necturus maculatus).
    Fok M; Stein RB
    Exp Brain Res; 2002 Aug; 145(4):498-504. PubMed ID: 12172661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The activity of interneurons during locomotion in the in vitro necturus spinal cord.
    Wheatley M; Jovanović K; Stein RB; Lawson V
    J Neurophysiol; 1994 Jun; 71(6):2025-32. PubMed ID: 7931500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin refines the locomotor-related alternations in the in vitro neonatal rat spinal cord.
    Pearlstein E; Ben Mabrouk F; Pflieger JF; Vinay L
    Eur J Neurosci; 2005 Mar; 21(5):1338-46. PubMed ID: 15813943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord.
    Cheng J; Jovanovic K; Aoyagi Y; Bennett DJ; Han Y; Stein RB
    Exp Brain Res; 2002 Jul; 145(2):190-8. PubMed ID: 12110959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The spinal 5-HT system contributes to the generation of fictive locomotion in lamprey.
    Zhang W; Grillner S
    Brain Res; 2000 Oct; 879(1-2):188-92. PubMed ID: 11011021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of intact and in-vitro locomotion in an adult amphibian.
    Wheatley M; Edamura M; Stein RB
    Exp Brain Res; 1992; 88(3):609-14. PubMed ID: 1587318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serotonergic systems in the spinal cord of the amphibian urodele Pleurodeles waltl.
    Branchereau P; Rodriguez JJ; Delvolvé I; Abrous DN; Le Moal M; Cabelguen JM
    J Comp Neurol; 2000 Mar; 419(1):49-60. PubMed ID: 10717639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of 5-HT to locomotion - the paradox of Pet-1(-/-) mice.
    Pearlstein E; Bras H; Deneris ES; Vinay L
    Eur J Neurosci; 2011 May; 33(10):1812-22. PubMed ID: 21501257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Locomotor rhythmogenesis in the isolated rat spinal cord: a phase-coupled set of symmetrical flexion extension oscillators.
    Juvin L; Simmers J; Morin D
    J Physiol; 2007 Aug; 583(Pt 1):115-28. PubMed ID: 17569737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the serotonergic system in locomotor recovery after spinal cord injury.
    Ghosh M; Pearse DD
    Front Neural Circuits; 2014; 8():151. PubMed ID: 25709569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Serotonergic Modulation of Locomotor Activity From Basal Vertebrates to Mammals.
    Flaive A; Fougère M; van der Zouwen CI; Ryczko D
    Front Neural Circuits; 2020; 14():590299. PubMed ID: 33224027
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The serotonin reuptake blocker citalopram destabilizes fictive locomotor activity in salamander axial circuits through 5-HT
    Flaive A; Cabelguen JM; Ryczko D
    J Neurophysiol; 2020 Jun; 123(6):2326-2342. PubMed ID: 32401145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonin controls initiation of locomotion and afferent modulation of coordination via 5-HT
    Cabaj AM; Majczyński H; Couto E; Gardiner PF; Stecina K; Sławińska U; Jordan LM
    J Physiol; 2017 Jan; 595(1):301-320. PubMed ID: 27393215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of serotonin in the control of locomotor movements and strategies for restoring locomotion after spinal cord injury.
    Sławińska U; Miazga K; Jordan LM
    Acta Neurobiol Exp (Wars); 2014; 74(2):172-87. PubMed ID: 24993627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in vitro preparation of the mudpuppy for simultaneous intracellular and electromyographic recording during locomotion.
    Wheatley M; Stein RB
    J Neurosci Methods; 1992 Apr; 42(1-2):129-37. PubMed ID: 1405730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion.
    Sławińska U; Miazga K; Cabaj AM; Leszczyńska AN; Majczyński H; Nagy JI; Jordan LM
    Exp Neurol; 2013 Sep; 247():572-81. PubMed ID: 23481546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of 5-HT
    Majczyński H; Cabaj AM; Jordan LM; Sławińska U
    Front Neural Circuits; 2020; 14():14. PubMed ID: 32425760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep/waking and EEG power spectrum effects of a nonselective serotonin (5-HT) antagonist and a selective 5-HT reuptake inhibitor given alone and in combination.
    Bjorvatn B; Bjørkum AA; Neckelmann D; Ursin R
    Sleep; 1995 Jul; 18(6):451-62. PubMed ID: 7481417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.