These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 8892819)

  • 1. Characterization of the region encoding the CO-induced hydrogenase of Rhodospirillum rubrum.
    Fox JD; He Y; Shelver D; Roberts GP; Ludden PW
    J Bacteriol; 1996 Nov; 178(21):6200-8. PubMed ID: 8892819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the CO-induced, CO-tolerant hydrogenase from Rhodospirillum rubrum and the gene encoding the large subunit of the enzyme.
    Fox JD; Kerby RL; Roberts GP; Ludden PW
    J Bacteriol; 1996 Mar; 178(6):1515-24. PubMed ID: 8626276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon monoxide-induced activation of gene expression in Rhodospirillum rubrum requires the product of cooA, a member of the cyclic AMP receptor protein family of transcriptional regulators.
    Shelver D; Kerby RL; He Y; Roberts GP
    J Bacteriol; 1995 Apr; 177(8):2157-63. PubMed ID: 7721706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and physiological characterization of the Rhodospirillum rubrum carbon monoxide dehydrogenase system.
    Kerby RL; Hong SS; Ensign SA; Coppoc LJ; Ludden PW; Roberts GP
    J Bacteriol; 1992 Aug; 174(16):5284-94. PubMed ID: 1644755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins.
    Tersteegen A; Hedderich R
    Eur J Biochem; 1999 Sep; 264(3):930-43. PubMed ID: 10491142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum. Role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase.
    Ensign SA; Ludden PW
    J Biol Chem; 1991 Sep; 266(27):18395-403. PubMed ID: 1917963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CO-dependent H2 evolution by Rhodospirillum rubrum: role of CODH:CooF complex.
    Singer SW; Hirst MB; Ludden PW
    Biochim Biophys Acta; 2006 Dec; 1757(12):1582-91. PubMed ID: 17123462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo nickel insertion into the carbon monoxide dehydrogenase of Rhodospirillum rubrum: molecular and physiological characterization of cooCTJ.
    Kerby RL; Ludden PW; Roberts GP
    J Bacteriol; 1997 Apr; 179(7):2259-66. PubMed ID: 9079911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of Rhodospirillum rubrum after carbon monoxide exposure reveals an important effect on metallic cofactor biosynthesis.
    Cavazza C; Collin-Faure V; Pérard J; Diemer H; Cianférani S; Rabilloud T; Darrouzet E
    J Proteomics; 2022 Jan; 250():104389. PubMed ID: 34601154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of carbon monoxide dehydrogenase and hydrogenase in Rhodospirillum rubrum: effects of CO and oxygen on synthesis and activity.
    Bonam D; Lehman L; Roberts GP; Ludden PW
    J Bacteriol; 1989 Jun; 171(6):3102-7. PubMed ID: 2498285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Converting the NiFeS carbon monoxide dehydrogenase to a hydrogenase and a hydroxylamine reductase.
    Heo J; Wolfe MT; Staples CR; Ludden PW
    J Bacteriol; 2002 Nov; 184(21):5894-7. PubMed ID: 12374822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-transducing nicotinamide nucleotide transhydrogenase: nucleotide sequences of the genes and predicted amino acid sequences of the subunits of the enzyme from Rhodospirillum rubrum.
    Yamaguchi M; Hatefi Y
    J Bioenerg Biomembr; 1994 Aug; 26(4):435-45. PubMed ID: 7844118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel heme protein that acts as a carbon monoxide-dependent transcriptional activator in Rhodospirillum rubrum.
    Aono S; Nakajima H; Saito K; Okada M
    Biochem Biophys Res Commun; 1996 Nov; 228(3):752-6. PubMed ID: 8941349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for three distinct hydrogenase activities in Rhodospirillum rubrum.
    Maness PC; Weaver PF
    Appl Microbiol Biotechnol; 2001 Dec; 57(5-6):751-6. PubMed ID: 11778889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a CO-responsive transcriptional activator from Rhodospirillum rubrum.
    He Y; Shelver D; Kerby RL; Roberts GP
    J Biol Chem; 1996 Jan; 271(1):120-3. PubMed ID: 8550545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementation analysis and regulation of CO2 fixation gene expression in a ribulose 1,5-bisphosphate carboxylase-oxygenase deletion strain of Rhodospirillum rubrum.
    Falcone DL; Tabita FR
    J Bacteriol; 1993 Aug; 175(16):5066-77. PubMed ID: 8349547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA sequence of a gene cluster coding for subunits of the F0 membrane sector of ATP synthase in Rhodospirillum rubrum. Support for modular evolution of the F1 and F0 sectors.
    Falk G; Walker JE
    Biochem J; 1988 Aug; 254(1):109-22. PubMed ID: 2902844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon monoxide dehydrogenase from Rhodospirillum rubrum.
    Bonam D; Murrell SA; Ludden PW
    J Bacteriol; 1984 Aug; 159(2):693-9. PubMed ID: 6430875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionally critical elements of CooA-related CO sensors.
    Youn H; Kerby RL; Conrad M; Roberts GP
    J Bacteriol; 2004 Mar; 186(5):1320-9. PubMed ID: 14973040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.