These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8892819)

  • 41. Redox-dependent activation of CO dehydrogenase from Rhodospirillum rubrum.
    Heo J; Halbleib CM; Ludden PW
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7690-3. PubMed ID: 11416171
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct electrochemical studies of hydrogenase and CO dehydrogenase.
    Smith ET; Ensign SA; Ludden PW; Feinberg BA
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):181-5. PubMed ID: 1637298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Growth of Rhodospirillum rubrum on synthesis gas: conversion of CO to H2 and poly-beta-hydroxyalkanoate.
    Do YS; Smeenk J; Broer KM; Kisting CJ; Brown R; Heindel TJ; Bobik TA; DiSpirito AA
    Biotechnol Bioeng; 2007 Jun; 97(2):279-86. PubMed ID: 17054121
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CooA: a heme-containing regulatory protein that serves as a specific sensor of both carbon monoxide and redox state.
    Roberts GP; Thorsteinsson MV; Kerby RL; Lanzilotta WN; Poulos T
    Prog Nucleic Acid Res Mol Biol; 2001; 67():35-63. PubMed ID: 11525385
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recognition of target DNA and transcription activation by the CO-sensing transcriptional activator CooA.
    Aono S; Takasaki H; Unno H; Kamiya T; Nakajima H
    Biochem Biophys Res Commun; 1999 Aug; 261(2):270-5. PubMed ID: 10425177
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The hupTUV operon is involved in negative control of hydrogenase synthesis in Rhodobacter capsulatus.
    Elsen S; Colbeau A; Chabert J; Vignais PM
    J Bacteriol; 1996 Sep; 178(17):5174-81. PubMed ID: 8752335
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A mutation in a Rhodobacter capsulatus gene encoding an integration host factor-like protein impairs in vivo hydrogenase expression.
    Toussaint B; Bosc C; Richaud P; Colbeau A; Vignais PM
    Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10749-53. PubMed ID: 1961742
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reactivity of carbon monoxide dehydrogenase from Rhodospirillum rubrum with carbon dioxide, carbonyl sulfide, and carbon disulfide.
    Ensign SA
    Biochemistry; 1995 Apr; 34(16):5372-8. PubMed ID: 7727395
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcription of Rhodospirillum rubrum atp operon.
    Falk G; Walker JE
    Biochem J; 1985 Aug; 229(3):663-8. PubMed ID: 2864916
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of multiple carbon monoxide consumption pathways in anaerobic bacteria.
    Techtmann SM; Colman AS; Murphy MB; Schackwitz WS; Goodwin LA; Robb FT
    Front Microbiol; 2011; 2():147. PubMed ID: 21808633
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome annotation provides insight into carbon monoxide and hydrogen metabolism in Rubrivivax gelatinosus.
    Wawrousek K; Noble S; Korlach J; Chen J; Eckert C; Yu J; Maness PC
    PLoS One; 2014; 9(12):e114551. PubMed ID: 25479613
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biochemical and biophysical properties of the CO-sensing transcriptional activator CooA.
    Aono S
    Acc Chem Res; 2003 Nov; 36(11):825-31. PubMed ID: 14622029
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rhodospirillum rubrum possesses a variant of the bchP gene, encoding geranylgeranyl-bacteriopheophytin reductase.
    Addlesee HA; Hunter CN
    J Bacteriol; 2002 Mar; 184(6):1578-86. PubMed ID: 11872709
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A hydrogen-sensing system in transcriptional regulation of hydrogenase gene expression in Alcaligenes species.
    Lenz O; Strack A; Tran-Betcke A; Friedrich B
    J Bacteriol; 1997 Mar; 179(5):1655-63. PubMed ID: 9045826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular characterization of an operon (hyp) necessary for the activity of the three hydrogenase isoenzymes in Escherichia coli.
    Lutz S; Jacobi A; Schlensog V; Böhm R; Sawers G; Böck A
    Mol Microbiol; 1991 Jan; 5(1):123-35. PubMed ID: 1849603
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase.
    Drennan CL; Heo J; Sintchak MD; Schreiter E; Ludden PW
    Proc Natl Acad Sci U S A; 2001 Oct; 98(21):11973-8. PubMed ID: 11593006
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nucleotide sequence and characterization of four additional genes of the hydrogenase structural operon from Rhizobium leguminosarum bv. viciae.
    Hidalgo E; Palacios JM; Murillo J; Ruiz-Argüeso T
    J Bacteriol; 1992 Jun; 174(12):4130-9. PubMed ID: 1597428
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nickel-specific, slow-binding inhibition of carbon monoxide dehydrogenase from Rhodospirillum rubrum by cyanide.
    Ensign SA; Hyman MR; Ludden PW
    Biochemistry; 1989 Jun; 28(12):4973-9. PubMed ID: 2504285
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning and sequencing of a [NiFe] hydrogenase operon from Desulfovibrio vulgaris Miyazaki F.
    Deckers HM; Wilson FR; Voordouw G
    J Gen Microbiol; 1990 Oct; 136(10):2021-8. PubMed ID: 2269874
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Analysis of the periplasmic [NiFe] hydrogenase transcription unit from Desulfovibrio fructosovorans.
    Rousset M; Dermoun Z; Wall JD; Belaich JP
    J Bacteriol; 1993 Jun; 175(11):3388-93. PubMed ID: 8501043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.