These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8892819)

  • 61. Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans.
    Malki S; Saimmaime I; De Luca G; Rousset M; Dermoun Z; Belaich JP
    J Bacteriol; 1995 May; 177(10):2628-36. PubMed ID: 7751270
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Single transduction in the transcriptional activator CooA containing a heme-based CO sensor: isolation of a dominant positive mutant which is active as the transcriptional activator even in the absence of CO.
    Aono S; Matsuo T; Shimono T; Ohkubo K; Takasaki H; Nakajima H
    Biochem Biophys Res Commun; 1997 Nov; 240(3):783-6. PubMed ID: 9398645
    [TBL] [Abstract][Full Text] [Related]  

  • 63. GlnD is essential for NifA activation, NtrB/NtrC-regulated gene expression, and posttranslational regulation of nitrogenase activity in the photosynthetic, nitrogen-fixing bacterium Rhodospirillum rubrum.
    Zhang Y; Pohlmann EL; Roberts GP
    J Bacteriol; 2005 Feb; 187(4):1254-65. PubMed ID: 15687189
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification of two important heme site residues (cysteine 75 and histidine 77) in CooA, the CO-sensing transcription factor of Rhodospirillum rubrum.
    Shelver D; Thorsteinsson MV; Kerby RL; Chung SY; Roberts GP; Reynolds MF; Parks RB; Burstyn JN
    Biochemistry; 1999 Mar; 38(9):2669-78. PubMed ID: 10052937
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO.
    Ashida H; Saito Y; Kojima C; Kobayashi K; Ogasawara N; Yokota A
    Science; 2003 Oct; 302(5643):286-90. PubMed ID: 14551435
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Amino acid sequence of cytochrome c' from the purple photosynthetic bacterium Rhodospirillum rubrum S1.
    Meyer TE; Ambler RP; Bartsch RG; Kamen MD
    J Biol Chem; 1975 Nov; 250(21):8416-21. PubMed ID: 172499
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Properties of the solubilized membrane-bound hydrogenase from the photosynthetic bacterium Rhodospirillum rubrum.
    Adams MW; Hall DO
    Arch Biochem Biophys; 1979 Jul; 195(2):288-99. PubMed ID: 224815
    [No Abstract]   [Full Text] [Related]  

  • 68. Thioredoxin from Rhodospirillum rubrum: primary structure and relation to thioredoxins from other photosynthetic bacteria.
    Johnson TC; Yee BC; Carlson DE; Buchanan BB; Johnson RS; Mathews WR; Biemann K
    J Bacteriol; 1988 May; 170(5):2406-8. PubMed ID: 3129411
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Identification and partial sequence of the BchA gene of Rhodospirillum rubrum.
    Lee IY; Collins ML
    Curr Microbiol; 1993 Aug; 27(2):85-90. PubMed ID: 7763790
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sustaining N2-dependent growth in the presence of CO.
    Kerby RL; Roberts GP
    J Bacteriol; 2011 Feb; 193(3):774-7. PubMed ID: 21115659
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A pyrophosphate synthase gene: molecular cloning and sequencing of the cDNA encoding the inorganic pyrophosphate synthase from Rhodospirillum rubrum.
    Baltscheffsky M; Nadanaciva S; Schultz A
    Biochim Biophys Acta; 1998 May; 1364(3):301-6. PubMed ID: 9630689
    [TBL] [Abstract][Full Text] [Related]  

  • 72. LIGHT-ACTIVATED HYDROGENASE IN RHODOSPIRILLUM RUBRUM.
    HANSON RS
    Biochim Biophys Acta; 1964 May; 79():433-45. PubMed ID: 14179443
    [No Abstract]   [Full Text] [Related]  

  • 73. Properties of cell-free hydrogenases of Escherichia coli and Rhodospirillum rubrum.
    GEST H
    J Bacteriol; 1952 Jan; 63(1):111-21. PubMed ID: 14927554
    [No Abstract]   [Full Text] [Related]  

  • 74. Isolation of the membrane-bound hydrogenase from Rhodospirillum rubrum.
    Adams MW; Hall DO
    Biochem Biophys Res Commun; 1977 Jul; 77(2):730-7. PubMed ID: 409403
    [No Abstract]   [Full Text] [Related]  

  • 75. Complete stabilization of water-soluble hydrogenase from Rhodospirillum rubrum under air atmosphere with a high concentration of chloride ions.
    Kakuno T; Hiura H; Yamashita J; Bartsch RG; Horio T
    J Biochem; 1978 Dec; 84(6):1649-51. PubMed ID: 104983
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Carbonyl sulfide inhibition of CO dehydrogenase from Rhodospirillum rubrum.
    Hyman MR; Ensign SA; Arp DJ; Ludden PW
    Biochemistry; 1989 Aug; 28(17):6821-6. PubMed ID: 2510818
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Redox-mediated transcriptional activation in a CooA variant.
    Thorsteinsson MV; Kerby RL; Youn H; Conrad M; Serate J; Staples CR; Roberts GP
    J Biol Chem; 2001 Jul; 276(29):26807-13. PubMed ID: 11359778
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Activation of the nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: kinetic characterization and reductant requirement.
    Ensign SA; Campbell MJ; Ludden PW
    Biochemistry; 1990 Feb; 29(8):2162-8. PubMed ID: 2109635
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A novel peroxiredoxin activity is located within the C-terminal end of Rhodospirillum rubrum adenylyltransferase.
    Jonsson A; Teixeira PF; Nordlund S
    J Bacteriol; 2008 Jan; 190(1):434-7. PubMed ID: 17951375
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Carbon monoxide-dependent transcriptional changes in a thermophilic, carbon monoxide-utilizing, hydrogen-evolving bacterium Calderihabitans maritimus KKC1 revealed by transcriptomic analysis.
    Inoue M; Izumihara H; Fukuyama Y; Omae K; Yoshida T; Sako Y
    Extremophiles; 2020 Jul; 24(4):551-564. PubMed ID: 32388815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.