BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 8893541)

  • 1. Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts.
    Kunkel T; Neuhaus G; Batschauer A; Chua NH; Schäfer E
    Plant J; 1996 Oct; 10(4):625-36. PubMed ID: 8893541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development.
    Neff MM; Chory J
    Plant Physiol; 1998 Sep; 118(1):27-35. PubMed ID: 9733523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana.
    Cerdán PD; Yanovsky MJ; Reymundo FC; Nagatani A; Staneloni RJ; Whitelam GC; Casal JJ
    Plant J; 1999 Jun; 18(5):499-507. PubMed ID: 10417700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast.
    Kunkel T; Speth V; Büche C; Schäfer E
    J Biol Chem; 1995 Aug; 270(34):20193-200. PubMed ID: 7650038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B.
    Eichenberg K; Bäurle I; Paulo N; Sharrock RA; Rüdiger W; Schäfer E
    FEBS Lett; 2000 Mar; 470(2):107-12. PubMed ID: 10734217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluence and wavelength requirements for Arabidopsis CAB gene induction by different phytochromes.
    Hamazato F; Shinomura T; Hanzawa H; Chory J; Furuya M
    Plant Physiol; 1997 Dec; 115(4):1533-40. PubMed ID: 9414562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytochrome A enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana.
    Casal JJ
    Plant Physiol; 1996 Nov; 112(3):965-73. PubMed ID: 8938405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways.
    Monte E; Alonso JM; Ecker JR; Zhang Y; Li X; Young J; Austin-Phillips S; Quail PH
    Plant Cell; 2003 Sep; 15(9):1962-80. PubMed ID: 12953104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies.
    Hirschfeld M; Tepperman JM; Clack T; Quail PH; Sharrock RA
    Genetics; 1998 Jun; 149(2):523-35. PubMed ID: 9611171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis.
    Cantón FR; Quail PH
    Plant Physiol; 1999 Dec; 121(4):1207-16. PubMed ID: 10594107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different phototransduction kinetics of phytochrome A and phytochrome B in Arabidopsis thaliana.
    Casal JJ; Cerdán PD; Staneloni RJ; Cattaneo L
    Plant Physiol; 1998 Apr; 116(4):1533-8. PubMed ID: 9536072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPA1, a component of phytochrome A signal transduction, regulates the light signaling current.
    Baumgardt RL; Oliverio KA; Casal JJ; Hoecker U
    Planta; 2002 Sep; 215(5):745-53. PubMed ID: 12244439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis.
    Casal JJ; Mazzella MA
    Plant Physiol; 1998 Sep; 118(1):19-25. PubMed ID: 9733522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant type A and B phytochromes from potato. Transient absorption spectroscopy.
    Ruddat A; Schmidt P; Gatz C; Braslavsky SE; Gärtner W; Schaffner K
    Biochemistry; 1997 Jan; 36(1):103-11. PubMed ID: 8993323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei.
    Osterlund MT; Deng XW
    Plant J; 1998 Oct; 16(2):201-8. PubMed ID: 9839465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue.
    Wade HK; Bibikova TN; Valentine WJ; Jenkins GI
    Plant J; 2001 Mar; 25(6):675-85. PubMed ID: 11319034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis.
    Li T; Jia KP; Lian HL; Yang X; Li L; Yang HQ
    Biochem Biophys Res Commun; 2014 Nov; 454(1):78-83. PubMed ID: 25450360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis.
    Somers DE; Quail PH
    Plant J; 1995 Mar; 7(3):413-27. PubMed ID: 7757114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Arabidopsis mutant hypersensitive to red and far-red light signals.
    Genoud T; Millar AJ; Nishizawa N; Kay SA; Schäfer E; Nagatani A; Chua NH
    Plant Cell; 1998 Jun; 10(6):889-904. PubMed ID: 9634578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B.
    Kunkel T; Tomizawa K; Kern R; Furuya M; Chua NH; Schäfer E
    Eur J Biochem; 1993 Aug; 215(3):587-94. PubMed ID: 8354265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.