These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 8893541)
1. Functional analysis of yeast-derived phytochrome A and B phycocyanobilin adducts. Kunkel T; Neuhaus G; Batschauer A; Chua NH; Schäfer E Plant J; 1996 Oct; 10(4):625-36. PubMed ID: 8893541 [TBL] [Abstract][Full Text] [Related]
2. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Neff MM; Chory J Plant Physiol; 1998 Sep; 118(1):27-35. PubMed ID: 9733523 [TBL] [Abstract][Full Text] [Related]
3. Regulation of phytochrome B signaling by phytochrome A and FHY1 in Arabidopsis thaliana. Cerdán PD; Yanovsky MJ; Reymundo FC; Nagatani A; Staneloni RJ; Whitelam GC; Casal JJ Plant J; 1999 Jun; 18(5):499-507. PubMed ID: 10417700 [TBL] [Abstract][Full Text] [Related]
4. In vivo characterization of phytochrome-phycocyanobilin adducts in yeast. Kunkel T; Speth V; Büche C; Schäfer E J Biol Chem; 1995 Aug; 270(34):20193-200. PubMed ID: 7650038 [TBL] [Abstract][Full Text] [Related]
5. Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B. Eichenberg K; Bäurle I; Paulo N; Sharrock RA; Rüdiger W; Schäfer E FEBS Lett; 2000 Mar; 470(2):107-12. PubMed ID: 10734217 [TBL] [Abstract][Full Text] [Related]
6. Fluence and wavelength requirements for Arabidopsis CAB gene induction by different phytochromes. Hamazato F; Shinomura T; Hanzawa H; Chory J; Furuya M Plant Physiol; 1997 Dec; 115(4):1533-40. PubMed ID: 9414562 [TBL] [Abstract][Full Text] [Related]
7. Phytochrome A enhances the promotion of hypocotyl growth caused by reductions in levels of phytochrome B in its far-red-light-absorbing form in light-grown Arabidopsis thaliana. Casal JJ Plant Physiol; 1996 Nov; 112(3):965-73. PubMed ID: 8938405 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Monte E; Alonso JM; Ecker JR; Zhang Y; Li X; Young J; Austin-Phillips S; Quail PH Plant Cell; 2003 Sep; 15(9):1962-80. PubMed ID: 12953104 [TBL] [Abstract][Full Text] [Related]
9. Coordination of phytochrome levels in phyB mutants of Arabidopsis as revealed by apoprotein-specific monoclonal antibodies. Hirschfeld M; Tepperman JM; Clack T; Quail PH; Sharrock RA Genetics; 1998 Jun; 149(2):523-35. PubMed ID: 9611171 [TBL] [Abstract][Full Text] [Related]
10. Both phyA and phyB mediate light-imposed repression of PHYA gene expression in Arabidopsis. Cantón FR; Quail PH Plant Physiol; 1999 Dec; 121(4):1207-16. PubMed ID: 10594107 [TBL] [Abstract][Full Text] [Related]
11. Different phototransduction kinetics of phytochrome A and phytochrome B in Arabidopsis thaliana. Casal JJ; Cerdán PD; Staneloni RJ; Cattaneo L Plant Physiol; 1998 Apr; 116(4):1533-8. PubMed ID: 9536072 [TBL] [Abstract][Full Text] [Related]
12. SPA1, a component of phytochrome A signal transduction, regulates the light signaling current. Baumgardt RL; Oliverio KA; Casal JJ; Hoecker U Planta; 2002 Sep; 215(5):745-53. PubMed ID: 12244439 [TBL] [Abstract][Full Text] [Related]
13. Conditional synergism between cryptochrome 1 and phytochrome B is shown by the analysis of phyA, phyB, and hy4 simple, double, and triple mutants in Arabidopsis. Casal JJ; Mazzella MA Plant Physiol; 1998 Sep; 118(1):19-25. PubMed ID: 9733522 [TBL] [Abstract][Full Text] [Related]
14. Recombinant type A and B phytochromes from potato. Transient absorption spectroscopy. Ruddat A; Schmidt P; Gatz C; Braslavsky SE; Gärtner W; Schaffner K Biochemistry; 1997 Jan; 36(1):103-11. PubMed ID: 8993323 [TBL] [Abstract][Full Text] [Related]
15. Multiple photoreceptors mediate the light-induced reduction of GUS-COP1 from Arabidopsis hypocotyl nuclei. Osterlund MT; Deng XW Plant J; 1998 Oct; 16(2):201-8. PubMed ID: 9839465 [TBL] [Abstract][Full Text] [Related]
16. Interactions within a network of phytochrome, cryptochrome and UV-B phototransduction pathways regulate chalcone synthase gene expression in Arabidopsis leaf tissue. Wade HK; Bibikova TN; Valentine WJ; Jenkins GI Plant J; 2001 Mar; 25(6):675-85. PubMed ID: 11319034 [TBL] [Abstract][Full Text] [Related]
17. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Li T; Jia KP; Lian HL; Yang X; Li L; Yang HQ Biochem Biophys Res Commun; 2014 Nov; 454(1):78-83. PubMed ID: 25450360 [TBL] [Abstract][Full Text] [Related]
18. Temporal and spatial expression patterns of PHYA and PHYB genes in Arabidopsis. Somers DE; Quail PH Plant J; 1995 Mar; 7(3):413-27. PubMed ID: 7757114 [TBL] [Abstract][Full Text] [Related]
19. An Arabidopsis mutant hypersensitive to red and far-red light signals. Genoud T; Millar AJ; Nishizawa N; Kay SA; Schäfer E; Nagatani A; Chua NH Plant Cell; 1998 Jun; 10(6):889-904. PubMed ID: 9634578 [TBL] [Abstract][Full Text] [Related]
20. In vitro formation of a photoreversible adduct of phycocyanobilin and tobacco apophytochrome B. Kunkel T; Tomizawa K; Kern R; Furuya M; Chua NH; Schäfer E Eur J Biochem; 1993 Aug; 215(3):587-94. PubMed ID: 8354265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]