These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 8893774)
1. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. Martin RB; Stover SM; Gibson VA; Gibeling JC; Griffin LV J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774 [TBL] [Abstract][Full Text] [Related]
2. Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue. Hiller LP; Stover SM; Gibson VA; Gibeling JC; Prater CS; Hazelwood SJ; Yeh OC; Martin RB J Orthop Res; 2003 May; 21(3):481-8. PubMed ID: 12706021 [TBL] [Abstract][Full Text] [Related]
3. Fatigue behavior of the equine third metacarpus: mechanical property analysis. Gibson VA; Stover SM; Martin RB; Gibeling JC; Willits NH; Gustafson MB; Griffin LV J Orthop Res; 1995 Nov; 13(6):861-8. PubMed ID: 8544022 [TBL] [Abstract][Full Text] [Related]
4. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. Martin RB; Lau ST; Mathews PV; Gibson VA; Stover SM J Biomech; 1996 Dec; 29(12):1515-21. PubMed ID: 8945649 [TBL] [Abstract][Full Text] [Related]
5. Do microcracks decrease or increase fatigue resistance in cortical bone? Sobelman OS; Gibeling JC; Stover SM; Hazelwood SJ; Yeh OC; Shelton DR; Martin RB J Biomech; 2004 Sep; 37(9):1295-303. PubMed ID: 15275836 [TBL] [Abstract][Full Text] [Related]
6. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes. Da Costa Gómez TM; Barrett JG; Sample SJ; Radtke CL; Kalscheur VL; Lu Y; Markel MD; Santschi EM; Scollay MC; Muir P Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291 [TBL] [Abstract][Full Text] [Related]
7. Osteonal effects on elastic modulus and fatigue life in equine bone. Gibson VA; Stover SM; Gibeling JC; Hazelwood SJ; Martin RB J Biomech; 2006; 39(2):217-25. PubMed ID: 16321623 [TBL] [Abstract][Full Text] [Related]
8. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Muir P; McCarthy J; Radtke CL; Markel MD; Santschi EM; Scollay MC; Kalscheur VL Bone; 2006 Mar; 38(3):342-9. PubMed ID: 16275175 [TBL] [Abstract][Full Text] [Related]
9. Residual strength of equine bone is not reduced by intense fatigue loading: implications for stress fracture. Martin RB; Gibson VA; Stover SM; Gibeling JC; Griffin LV J Biomech; 1997 Feb; 30(2):109-14. PubMed ID: 9001930 [TBL] [Abstract][Full Text] [Related]
10. The behaviour of microcracks in compact bone. O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026 [TBL] [Abstract][Full Text] [Related]
11. Stiff and strong compressive properties are associated with brittle post-yield behavior in equine compact bone material. Les CM; Stover SM; Keyak JH; Taylor KT; Kaneps AJ J Orthop Res; 2002 May; 20(3):607-14. PubMed ID: 12038638 [TBL] [Abstract][Full Text] [Related]
12. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Colopy SA; Benz-Dean J; Barrett JG; Sample SJ; Lu Y; Danova NA; Kalscheur VL; Vanderby R; Markel MD; Muir P Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095 [TBL] [Abstract][Full Text] [Related]
13. The effects of increased intracortical remodeling on microcrack behaviour in compact bone. Kennedy OD; Brennan O; Mauer P; Rackard SM; O'Brien FJ; Taylor D; Lee TC Bone; 2008 Nov; 43(5):889-93. PubMed ID: 18706535 [TBL] [Abstract][Full Text] [Related]
14. Fractures--a preventable hazard of racing thoroughbreds? Riggs CM Vet J; 2002 Jan; 163(1):19-29. PubMed ID: 11749133 [TBL] [Abstract][Full Text] [Related]
15. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading. Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298 [TBL] [Abstract][Full Text] [Related]
16. A theory of fatigue damage accumulation and repair in cortical bone. Martin B J Orthop Res; 1992 Nov; 10(6):818-25. PubMed ID: 1403296 [TBL] [Abstract][Full Text] [Related]
17. Mathematical model for repair of fatigue damage and stress fracture in osteonal bone. Martin B J Orthop Res; 1995 May; 13(3):309-16. PubMed ID: 7602391 [TBL] [Abstract][Full Text] [Related]
18. [Manufacture and application of SL-2000 bone fatigue damage testing device]. Dai R; Liao E; Wu X; Yang C; Meng L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):192-5. PubMed ID: 16532839 [TBL] [Abstract][Full Text] [Related]
19. The influence of collagen fiber orientation and other histocompositional characteristics on the mechanical properties of equine cortical bone. Skedros JG; Dayton MR; Sybrowsky CL; Bloebaum RD; Bachus KN J Exp Biol; 2006 Aug; 209(Pt 15):3025-42. PubMed ID: 16857886 [TBL] [Abstract][Full Text] [Related]
20. Bone maintenance and remodeling: a control system based on fatigue damage. Taylor D J Orthop Res; 1997 Jul; 15(4):601-6. PubMed ID: 9379271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]