These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 8893780)

  • 61. Cement-implant interface gaps explain the poor results of CMW3 for femoral stem fixation: A cadaver study of migration, fatigue and mantle morphology.
    Race A; Miller MA; Clarke MT; Mann KA
    Acta Orthop; 2005 Oct; 76(5):679-87. PubMed ID: 16263615
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Bone-methyl methacrylate interfacial shear strength: an experimental study of dogs.
    McCarthy TC; Wells MK; Gorman HA
    Am J Vet Res; 1977 Jan; 38(1):75-9. PubMed ID: 835870
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Strength of the cement-bone interface.
    Krause WR; Krug W; Miller J
    Clin Orthop Relat Res; 1982 Mar; (163):290-9. PubMed ID: 7067264
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Influence of time in-situ and implant type on fixation strength of cemented tibial trays - a post mortem retrieval analysis.
    Gebert de Uhlenbrock A; Püschel V; Püschel K; Morlock MM; Bishop NE
    Clin Biomech (Bristol, Avon); 2012 Nov; 27(9):929-35. PubMed ID: 22819669
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effects of weight bearing on the bone-cement interface after total hip arthroplasty.
    Gitelis S
    Proc Inst Med Chic; 1979; 32(5):95, 108. PubMed ID: 493277
    [No Abstract]   [Full Text] [Related]  

  • 66. [Gentamycin liberation from the low viscosity PMMA bone cement Refobacin E flow following TEP implantation].
    Buchholz M; Thabe H
    Aktuelle Probl Chir Orthop; 1987; 31():362-4. PubMed ID: 2888386
    [No Abstract]   [Full Text] [Related]  

  • 67. Residual stresses at the stem-cement interface of an idealized cemented hip stem.
    Nuño N; Avanzolini G
    J Biomech; 2002 Jun; 35(6):849-52. PubMed ID: 12021006
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Mechanical stability of total hip replacement using pressurization of bone cement during curing: push-out tests in cadaver femora.
    Apostolou CD; Yiannakopoulos CK; Ioannidis TT; Papagelopoulos PJ; Korres D
    Orthopedics; 2007 Dec; 30(12):1028-32. PubMed ID: 18198774
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The viscosity of acrylic bone cements.
    Krause WR; Miller J; Ng P
    J Biomed Mater Res; 1982 May; 16(3):219-43. PubMed ID: 7085686
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The inadequacy of standard radiographs in detecting flaws in the cement mantle.
    Reading AD; McCaskie AW; Gregg PJ
    J Bone Joint Surg Br; 1999 Jan; 81(1):167-70. PubMed ID: 10068026
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The effect of viscosity on cement penetration in total knee arthroplasty, an application of the squeeze film effect.
    Silverman EJ; Landy DC; Massel DH; Kaimrajh DN; Latta LL; Robinson RP
    J Arthroplasty; 2014 Oct; 29(10):2039-42. PubMed ID: 25007724
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Experimental study in femoral component total hip replacement: mechanical failures of cement-bone interface with comparison of prosthesis, cement thickness, orientation and plug insertion.
    Savino AW
    Proc Inst Med Chic; 1978; 32(1):13-4. PubMed ID: 662836
    [No Abstract]   [Full Text] [Related]  

  • 73. The effect of the extracorporeal shock wave lithotriptor on the bone-cement interface in dogs.
    Weinstein JN; Oster DM; Park JB; Park SH; Loening S
    Clin Orthop Relat Res; 1988 Oct; (235):261-7. PubMed ID: 3416532
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The effect of centrifugation on the mechanical properties of cement. An in vitro total hip-arthroplasty model.
    Chin HC; Stauffer RN; Chao EY
    J Bone Joint Surg Am; 1990 Mar; 72(3):363-8. PubMed ID: 2312531
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Cement microcracks in thin-mantle regions after in vitro fatigue loading.
    Mann KA; Gupta S; Race A; Miller MA; Cleary RJ; Ayers DC
    J Arthroplasty; 2004 Aug; 19(5):605-12. PubMed ID: 15284982
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Would revision arthroplasty be facilitated by extracorporeal shock wave lithotripsy? An evaluation including whole bone strength in dogs.
    Stranne SK; Callaghan JJ; Cocks FH; Weinerth JL; Seaber AV; Myers BS
    Clin Orthop Relat Res; 1993 Feb; (287):252-8. PubMed ID: 8448953
    [TBL] [Abstract][Full Text] [Related]  

  • 77. [Experimental study on the bone cement-precoated implant in arthroplasty].
    Zheng ZK
    Zhonghua Wai Ke Za Zhi; 1989 Jun; 27(6):376-8, 383. PubMed ID: 2582942
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Comparative circulatory studies during implantation of total endoprostheses using methylmethacrylate and BDF cement].
    Fuchs HJ; Seidel H; Welter J; Herden HN; Kohler F
    Anasth Intensivther Notfallmed; 1983 Dec; 18(6):291-5. PubMed ID: 6666842
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stress transfer at the femoral bone/bone cement interface as a function of the cement thickness.
    Jansson V; Heimkes B; Zimmer M
    Arch Orthop Trauma Surg; 1993; 112(2):65-8. PubMed ID: 8457413
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mechanical strength of the cement-bone interface is greater in shear than in tension.
    Mann KA; Werner FW; Ayers DC
    J Biomech; 1999 Nov; 32(11):1251-4. PubMed ID: 10541077
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.