These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8894157)

  • 1. Accuracy of orthodontic force and tooth movement measurements.
    Lundgren D; Owman-Moll P; Kurol J; Mårtensson B
    Br J Orthod; 1996 Aug; 23(3):241-8. PubMed ID: 8894157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force levels in complex tooth alignment with conventional and self-ligating brackets.
    Montasser MA; El-Bialy T; Keilig L; Reimann S; Jäger A; Bourauel C
    Am J Orthod Dentofacial Orthop; 2013 Apr; 143(4):507-14. PubMed ID: 23561412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constant versus dissipating forces in orthodontics: the effect on initial tooth movement and root resorption.
    Weiland F
    Eur J Orthod; 2003 Aug; 25(4):335-42. PubMed ID: 12938838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic determination of centres of rotation produced by orthodontic force systems.
    Pedersen E; Andersen K; Gjessing PE
    Eur J Orthod; 1990 Aug; 12(3):272-80. PubMed ID: 2401334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different bracket-archwire combinations for simulated correction of two-dimensional tooth malalignment: Leveling outcomes and initial force systems.
    Holtmann S; Konermann A; Keilig L; Reimann S; Jäger A; Montasser M; El-Bialy T; Bourauel C
    J Orofac Orthop; 2014 Nov; 75(6):459-70. PubMed ID: 25344125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Orthodontic measuring and simulating systems (OMSS) for the static and dynamic analysis of tooth movement].
    Drescher D; Bourauel C; Thier M
    Fortschr Kieferorthop; 1991 Jun; 52(3):133-40. PubMed ID: 1894242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early tooth movement pattern after application of a controlled continuous orthodontic force. A human experimental model.
    Lundgren D; Owman-Moll P; Kurol J
    Am J Orthod Dentofacial Orthop; 1996 Sep; 110(3):287-94. PubMed ID: 8814030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ex vivo surface and mechanical properties of coated orthodontic archwires.
    Elayyan F; Silikas N; Bearn D
    Eur J Orthod; 2008 Dec; 30(6):661-7. PubMed ID: 19011166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of a doubled orthodontic force magnitude on tooth movement and root resorptions. An inter-individual study in adolescents.
    Owman-Moll P; Kurol J; Lundgren D
    Eur J Orthod; 1996 Apr; 18(2):141-50. PubMed ID: 8670926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rate of orthodontic tooth movement after changing the force magnitude: an experimental study in beagle dogs.
    Van Leeuwen EJ; Kuijpers-Jagtman AM; Von den Hoff JW; Wagener FA; Maltha JC
    Orthod Craniofac Res; 2010 Nov; 13(4):238-45. PubMed ID: 21040467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of a four-fold increased orthodontic force magnitude on tooth movement and root resorptions. An intra-individual study in adolescents.
    Owman-Moll P; Kurol J; Lundgren D
    Eur J Orthod; 1996 Jun; 18(3):287-94. PubMed ID: 8791892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Orthodontic tooth movement and root resorption with special reference to force magnitude and duration. A clinical and histological investigation in adolescents.
    Owman-Moll P
    Swed Dent J Suppl; 1995; 105():1-45. PubMed ID: 7638765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing force systems and biomechanics--measured tooth movements from differential moment closing loops.
    Kuhlberg AJ; Priebe D
    Angle Orthod; 2003 Jun; 73(3):270-80. PubMed ID: 12828435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of fluoride on orthodontic tooth movement in humans. A two- and three-dimensional evaluation.
    Karadeniz EI; Gonzales C; Elekdag-Turk S; Isci D; Sahin-Saglam AM; Alkis H; Turk T; Darendeliler MA
    Aust Orthod J; 2011 Nov; 27(2):94-101. PubMed ID: 22372264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human tooth movement in response to continuous stress of low magnitude.
    Iwasaki LR; Haack JE; Nickel JC; Morton J
    Am J Orthod Dentofacial Orthop; 2000 Feb; 117(2):175-83. PubMed ID: 10672218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro testing of a measuring system for in vivo recording of orthodontically applied forces and moments in the multiband technique. Part II.
    Friedrich D; Rosarius N; Schwindke P; Rau G; Diedrich P
    J Orofac Orthop; 1998; 59(2):82-9. PubMed ID: 9577103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interleukin-1beta levels, pain intensity, and tooth movement using two different magnitudes of continuous orthodontic force.
    Luppanapornlarp S; Kajii TS; Surarit R; Iida J
    Eur J Orthod; 2010 Oct; 32(5):596-601. PubMed ID: 20534713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a magnetic sensing device for tooth displacement under orthodontic forces.
    Yoshida N; Koga Y; Saimoto A; Ishimatsu T; Yamada Y; Kobayashi K
    IEEE Trans Biomed Eng; 2001 Mar; 48(3):354-60. PubMed ID: 11327504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bite-opening mechanics as applied in the Begg Technique.
    Xu TM; Lin JX; Kui H; Huang JF
    Br J Orthod; 1994 May; 21(2):189-95. PubMed ID: 8043568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symmetric and asymmetric expansion of molars using a Burstone-type transpalatal arch. Biomechanical and clinical analysis.
    Tsetsilas M; Konermann AC; Keilig L; Reimann S; Jäger A; Bourauel C
    J Orofac Orthop; 2015 Sep; 76(5):377-90. PubMed ID: 26250453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.