These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8894290)

  • 1. Odour plumes and odour-mediated flight in insects.
    Cardé RT
    Ciba Found Symp; 1996; 200():54-66; discussion 66-70. PubMed ID: 8894290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Moment-to-moment flight manoeuvres of the female yellow fever mosquito (Aedes aegypti L.) in response to plumes of carbon dioxide and human skin odour.
    Dekker T; Cardé RT
    J Exp Biol; 2011 Oct; 214(Pt 20):3480-94. PubMed ID: 21957112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Navigation Along Windborne Plumes of Pheromone and Resource-Linked Odors.
    Cardé RT
    Annu Rev Entomol; 2021 Jan; 66():317-336. PubMed ID: 32926790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking
    Demir M; Kadakia N; Anderson HD; Clark DA; Emonet T
    Elife; 2020 Nov; 9():. PubMed ID: 33140723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of odour plume structure on upwind flight of mosquitoes towards hosts.
    Geier M; Bosch OJ; Boeckh J
    J Exp Biol; 1999 Jun; 202 (Pt 12)():1639-48. PubMed ID: 10333509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths.
    Vickers NJ; Baker TC
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5756-60. PubMed ID: 11607476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free-flight responses of Drosophila melanogaster to attractive odors.
    Budick SA; Dickinson MH
    J Exp Biol; 2006 Aug; 209(Pt 15):3001-17. PubMed ID: 16857884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Going against the flow: bumblebees prefer to fly upwind and display more variable kinematics when flying downwind.
    Combes SA; Gravish N; Gagliardi SF
    J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37070947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation, orientation and landing of female Culex quinquefasciatus in response to carbon dioxide and odour from human feet: 3-D flight analysis in a wind tunnel.
    Lacey ES; Cardé RT
    Med Vet Entomol; 2011 Mar; 25(1):94-103. PubMed ID: 21118282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wind tunnel studies of sex pheromone-mediated behavior of the Hessian fly (Diptera: Cecidomyiidae).
    Harris MO; Foster SP
    J Chem Ecol; 1991 Dec; 17(12):2421-35. PubMed ID: 24258636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Context-dependent olfactory enhancement of optomotor flight control in Drosophila.
    Chow DM; Frye MA
    J Exp Biol; 2008 Aug; 211(Pt 15):2478-85. PubMed ID: 18626082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source.
    Liberzon A; Harrington K; Daniel N; Gurka R; Harari A; Zilman G
    PLoS One; 2018; 13(6):e0198422. PubMed ID: 29897978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Close encounters: contributions of carbon dioxide and human skin odour to finding and landing on a host in
    Lacey ES; Ray A; Cardé RT
    Physiol Entomol; 2014 Mar; 39(1):60-68. PubMed ID: 24839345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic use of optic flow during pheromone tracking by the male silkmoth, Bombyx mori.
    Pansopha P; Ando N; Kanzaki R
    J Exp Biol; 2014 May; 217(Pt 10):1811-20. PubMed ID: 24829328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.).
    Willis MA; Avondet JL; Finnell AS
    J Exp Biol; 2008 Jul; 211(Pt 14):2317-26. PubMed ID: 18587126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and manipulation of the structure of odor plumes from a piezo-electric release system and measurements of upwind flight of male almond moths, Cadra cautella, to pheromone plumes.
    Girling RD; Cardé RT
    J Chem Ecol; 2007 Oct; 33(10):1927-45. PubMed ID: 17828430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor-modulated upwind flight of the sphinx moth, Manduca sexta L.
    Willis MA; Arbas EA
    J Comp Physiol A; 1991 Oct; 169(4):427-40. PubMed ID: 1779417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active anemosensing hypothesis: how flying insects could estimate ambient wind direction through sensory integration and active movement.
    van Breugel F; Jewell R; Houle J
    J R Soc Interface; 2022 Aug; 19(193):20220258. PubMed ID: 36043287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.