BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8894922)

  • 1. Effects of friction and nonlinearities on the separation of arterial waves into their forward and backward components.
    Pythoud F; Stergiopulos N; Bertram CD; Meister JJ
    J Biomech; 1996 Nov; 29(11):1419-23. PubMed ID: 8894922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of arterial pressure waves into their forward and backward running components.
    Pythoud F; Stergiopulos N; Meister JJ
    J Biomech Eng; 1996 Aug; 118(3):295-301. PubMed ID: 8872250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forward and backward waves in the arterial system: nonlinear separation using Riemann invariants.
    Pythoud F; Stergiopulos N; Meister JJ
    Technol Health Care; 1995 Dec; 3(3):201-7. PubMed ID: 8749866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear separation of forward and backward running waves in elastic conduits.
    Stergiopulos N; Tardy Y; Meister JJ
    J Biomech; 1993 Feb; 26(2):201-9. PubMed ID: 8429061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes.
    Bertram CD; Pythoud F; Stergiopulos N; Meister JJ
    Med Eng Phys; 1999 Apr; 21(3):155-66. PubMed ID: 10468357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of wave speed and wave separation in the arteries using diameter and velocity.
    Feng J; Khir AW
    J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid friction and wall viscosity of the 1D blood flow model.
    Wang XF; Nishi S; Matsukawa M; Ghigo A; Lagrée PY; Fullana JM
    J Biomech; 2016 Feb; 49(4):565-71. PubMed ID: 26862041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of wave speed and reflected waves in elastic tubes and bifurcations.
    Khir AW; Parker KH
    J Biomech; 2002 Jun; 35(6):775-83. PubMed ID: 12020997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forward and backward running waves in the arteries: analysis using the method of characteristics.
    Parker KH; Jones CJ
    J Biomech Eng; 1990 Aug; 112(3):322-6. PubMed ID: 2214715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.
    Feng J; Long Q; Khir AW
    J Biomech; 2007; 40(10):2130-8. PubMed ID: 17166499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vivo study of the total occlusion method for the analysis of forward and backward pressure waves.
    Newman DL; Greenwald SE; Bowden NL
    Cardiovasc Res; 1979 Oct; 13(10):595-600. PubMed ID: 519662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear and nonlinear one-dimensional models of pulse wave transmission at high Womersley numbers.
    Reuderink PJ; Hoogstraten HW; Sipkema P; Hillen B; Westerhof N
    J Biomech; 1989; 22(8-9):819-27. PubMed ID: 2613717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
    Feng J; Khir AW
    Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A quasi-linear constitutive relation for arterial wall materials.
    Demiray H
    J Biomech; 1996 Aug; 29(8):1011-4. PubMed ID: 8817367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical analysis of pressure pulse propagation in arterial vessels.
    Belardinelli E; Cavalcanti S
    J Biomech; 1992 Nov; 25(11):1337-49. PubMed ID: 1400535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waves in initially stressed fluid-filled thick tubes.
    Demiray H
    J Biomech; 1997 Mar; 30(3):273-6. PubMed ID: 9119827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linear and Nonlinear Viscoelastic Arterial Wall Models: Application on Animals.
    Ghigo AR; Wang XF; Armentano R; Fullana JM; Lagrée PY
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27685359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the wave transmission and reflection properties of stenoses.
    Stergiopulos N; Spiridon M; Pythoud F; Meister JJ
    J Biomech; 1996 Jan; 29(1):31-8. PubMed ID: 8839015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of rheology in confinement.
    Aerov AA; Krüger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042301. PubMed ID: 26565234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of oscillatory flow pressure gradient in an elastic artery model.
    Cohen MI; Wang DM; Tarbell JM
    Biorheology; 1995; 32(4):459-71. PubMed ID: 7579210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.