These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 8894922)

  • 21. Determination of wave speed and wave separation in the arteries.
    Khir AW; O'Brien A; Gibbs JS; Parker KH
    J Biomech; 2001 Sep; 34(9):1145-55. PubMed ID: 11506785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematical analysis of non-Newtonian blood flow in stenosis narrow arteries.
    Sriyab S
    Comput Math Methods Med; 2014; 2014():479152. PubMed ID: 25587350
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The resolution of arterial pulses into forward and backward waves as an approach to the determination of the characteristic impedance.
    Sperling W; Bauer RD; Busse R; Körner H; Pasch T
    Pflugers Arch; 1975 Mar; 355(3):217-27. PubMed ID: 124855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling of the wave transmission properties of large arteries using nonlinear elastic tubes.
    Pythoud F; Stergiopulos N; Meister JJ
    J Biomech; 1994 Nov; 27(11):1379-81. PubMed ID: 7798288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A viscoelastic model for use in predicting arterial pulse waves.
    Holenstein R; Niederer P; Anliker M
    J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of non-Newtonian behavior of blood on flow in an elastic artery model.
    Dutta A; Tarbell JM
    J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear shear wave interaction in soft solids.
    Jacob X; Catheline S; Gennisson JL; Barrière C; Royer D; Fink M
    J Acoust Soc Am; 2007 Oct; 122(4):1917-26. PubMed ID: 17902828
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Repeated reflection of waves in the systemic arterial system.
    Berger DS; Li JK; Laskey WK; Noordergraaf A
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H269-81. PubMed ID: 8430856
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The physiological impact of the nonlinearity of arterial elasticity in the ambulatory arterial stiffness index.
    Craiem D; Graf S; Salvucci F; Chironi G; Megnien JL; Simon A; Armentano RL
    Physiol Meas; 2010 Jul; 31(7):1037-46. PubMed ID: 20585150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantification of wave reflection using peripheral blood pressure waveforms.
    Kim CS; Fazeli N; McMurtry MS; Finegan BA; Hahn JO
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):309-16. PubMed ID: 25561452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy.
    Nichols WW; Edwards DG
    J Cardiovasc Pharmacol Ther; 2001 Jan; 6(1):5-21. PubMed ID: 11452332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Periodic flow of a viscous fluid superposed on steady flow in an orthotropic initially stressed elastic tube. Determination of fluid velocities and displacement components of the wall.
    Schwerdt H; Constantinesco A
    Biorheology; 1976 Feb; 13(1):7-20. PubMed ID: 938742
    [No Abstract]   [Full Text] [Related]  

  • 36. Active poroelastic two-phase model for the motion of physarum microplasmodia.
    Kulawiak DA; Löber J; Bär M; Engel H
    PLoS One; 2019; 14(8):e0217447. PubMed ID: 31398215
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels.
    Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN
    J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Arterial wave reflection during antihypertensive therapy with barnidipine: a 6-month, open-label study using an integrated cardiovascular ultrasound approach in patients with newly diagnosed hypertension.
    Palombo C; Malshi E; Morizzo C; Rakebrandt F; Corretti V; Santini F; Fraser AG; Kozakova M
    Clin Ther; 2009 Dec; 31(12):2873-85. PubMed ID: 20110026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear guided wave propagation in prestressed plates.
    Pau A; Lanza di Scalea F
    J Acoust Soc Am; 2015 Mar; 137(3):1529-40. PubMed ID: 25786963
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calculation of forward and backward arterial waves by analysis of two pressure waveforms.
    Swamy G; Olivier NB; Mukkamala R
    IEEE Trans Biomed Eng; 2010 Dec; 57(12):2833-9. PubMed ID: 20833598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.