These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8895129)

  • 1. Picosecond laser in situ keratomileusis with a 1053-nm Nd:YLF laser.
    Ito M; Quantock AJ; Malhan S; Schanzlin DJ; Krueger RR
    J Refract Surg; 1996; 12(6):721-8. PubMed ID: 8895129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The picosecond laser for nonmechanical laser in situ keratomileusis.
    Krueger RR; Juhasz T; Gualano A; Marchi V
    J Refract Surg; 1998; 14(4):467-9. PubMed ID: 9699173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lamellar refractive surgery with scanned intrastromal picosecond and femtosecond laser pulses in animal eyes.
    Kurtz RM; Horvath C; Liu HH; Krueger RR; Juhasz T
    J Refract Surg; 1998; 14(5):541-8. PubMed ID: 9791821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrastructure of picosecond laser intrastromal photodisruption.
    Krueger RR; Quantock AJ; Juhasz T; Ito M; Assil KK; Schanzlin DJ
    J Refract Surg; 1996; 12(5):607-12. PubMed ID: 8871862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical analysis of the neodymium:YLF picosecond laser as a microkeratome for laser in situ keratomileusis. Partially Sighted Eye Study.
    Krueger RR; Marchi V; Gualano A; Juhasz T; Speaker M; Suárez C
    J Cataract Refract Surg; 1998 Nov; 24(11):1434-40. PubMed ID: 9818331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of ablation of corneal tissue by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):479-86. PubMed ID: 7842704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina.
    Vogel A; Capon MR; Asiyo-Vogel MN; Birngruber R
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):3032-44. PubMed ID: 8206720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Corneal ablations produced by the neodymium doped yttrium-lithium-fluoride picosecond laser.
    Brown DB; O'Brien WJ; Schultz RO
    Cornea; 1994 Nov; 13(6):471-8. PubMed ID: 7842703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrastromal refractive surgery with ultrashort laser pulses: in vivo study on the rabbit eye.
    Heisterkamp A; Mamom T; Kermani O; Drommer W; Welling H; Ertmer W; Lubatschowski H
    Graefes Arch Clin Exp Ophthalmol; 2003 Jun; 241(6):511-7. PubMed ID: 12756580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myopic intrastromal photorefractive keratectomy with the neodymium-yttrium lithium fluoride picosecond laser in the cat cornea.
    Habib MS; Speaker MG; Kaiser R; Juhasz T
    Arch Ophthalmol; 1995 Apr; 113(4):499-505. PubMed ID: 7710402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrastromal photorefractive keratectomy for myopia by Nd:YLF picosecond laser.
    Marchi V; Gualano A; Zumbo G; Marchi S
    J Refract Surg; 1996 Feb; 12(2):S284-7. PubMed ID: 8653511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of ultrashort laser pulses for intrastromal refractive surgery.
    Lubatschowski H; Maatz G; Heisterkamp A; Hetzel U; Drommer W; Welling H; Ertmer W
    Graefes Arch Clin Exp Ophthalmol; 2000 Jan; 238(1):33-9. PubMed ID: 10664050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of wound healing after photorefractive keratectomy and laser in situ keratomileusis in rabbits.
    Park CK; Kim JH
    J Cataract Refract Surg; 1999 Jun; 25(6):842-50. PubMed ID: 10374167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser in situ keratomileusis.
    Pallikaris IG; Papatzanaki ME; Stathi EZ; Frenschock O; Georgiadis A
    Lasers Surg Med; 1990; 10(5):463-8. PubMed ID: 2233101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasound biomicroscopy of intrastromal photorefractive keratectomy with the Nd:YLF picosecond laser.
    Habib MS; Speaker MG; Tello C; Liebmann J; Ritch R
    J Refract Surg; 1995; 11(6):448-52. PubMed ID: 8624828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal flap thickness in laser in situ keratomileusis using an SCMD manual microkeratome.
    Yi WM; Joo CK
    J Cataract Refract Surg; 1999 Aug; 25(8):1087-92. PubMed ID: 10445194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of cornea flap made by femtosecond laser and microkeratome in laser in situ keratomileusis].
    Lian JC; Zhang SS; Zhang J; Ye S
    Zhonghua Yan Ke Za Zhi; 2013 Apr; 49(4):305-8. PubMed ID: 23900088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond laser photodisruptive effects on the posterior human corneal stroma investigated with atomic force microscopy.
    Serrao S; Lombardo M; De Santo MP; Lombardo G; Schiano Lomoriello D; Ducoli P; Stirpe M
    Eur J Ophthalmol; 2012; 22 Suppl 7():S89-97. PubMed ID: 22267457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasma-mediated ablation of corneal tissue at 1053 nm using a Nd:YLF oscillator/regenerative amplifier laser.
    Niemz MH; Klancnik EG; Bille JF
    Lasers Surg Med; 1991; 11(5):426-31. PubMed ID: 1816477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical models of picosecond laser keratomileusis for high myopia.
    Bryant MR; Marchi V; Juhasz T
    J Refract Surg; 2000; 16(2):155-62. PubMed ID: 10766384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.