These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8895129)

  • 21. [The histopathological observation of rabbit corneas after small incision lenticule extraction].
    Dong ZX; He L; Sun ZY; Shen Y; Chu RY; Zhou XT
    Zhonghua Yan Ke Za Zhi; 2016 Jul; 52(7):507-13. PubMed ID: 27531111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lower energy to make a corneal flap with a 60 kHz femtosecond laser reduces flap inflammation and corneal stromal cell death but weakens flap adhesion.
    Kim JY; Joo SW; Sunwoo JH; Kim ES; Kim MJ; Tchah H
    Korean J Ophthalmol; 2013 Apr; 27(2):120-5. PubMed ID: 23543236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Initial clinical experience with the picosecond Nd:YLF laser for intraocular therapeutic applications.
    Geerling G; Roider J; Schmidt-Erfurt U; Nahen K; el-Hifnawi el-S ; Laqua H; Vogel A
    Br J Ophthalmol; 1998 May; 82(5):504-9. PubMed ID: 9713056
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Picosecond neodymium:yttrium lithium fluoride (Nd:YLF) laser peripheral iridotomy.
    Oram O; Gross RL; Severin TD; Orengo-Nania S; Feldman RM
    Am J Ophthalmol; 1995 Apr; 119(4):408-14. PubMed ID: 7709965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular effects after laser in situ keratomileusis flap formation with femtosecond lasers: a review.
    Santhiago MR; Wilson SE
    Cornea; 2012 Feb; 31(2):198-205. PubMed ID: 22157568
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental results of preparing laser-shaped stromal implants for laser-assisted intrastromal keratophakia in extremely complicated laser in situ keratomileusis cases.
    Jankov M; Mrochen MC; Bueeler M; Seiler T
    J Refract Surg; 2002; 18(5):S639-43. PubMed ID: 12361173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myopic keratomileusis with the excimer laser: one-year follow up.
    Buratto L; Ferrari M; Genisi C
    Refract Corneal Surg; 1993; 9(1):12-9. PubMed ID: 8481368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Wound healing following intrastromal photorefractive keratectomy with the Nd:YLF picosecond laser in the cat.
    Habib MS; Speaker MG; McCormick SA; Kaiser R
    J Refract Surg; 1995; 11(6):442-7. PubMed ID: 8624827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative study of stromal bed quality by using mechanical, IntraLase femtosecond laser 15- and 30-kHz microkeratomes.
    Sarayba MA; Ignacio TS; Binder PS; Tran DB
    Cornea; 2007 May; 26(4):446-51. PubMed ID: 17457194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. First clinical results with the femtosecond neodynium-glass laser in refractive surgery.
    Ratkay-Traub I; Ferincz IE; Juhasz T; Kurtz RM; Krueger RR
    J Refract Surg; 2003; 19(2):94-103. PubMed ID: 12701713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accuracy of corneal lenticules produced for lamellar refractive corneal surgery.
    Wachtlin J; Schüler A; Hoffmann F
    Cornea; 1995 May; 14(3):235-42. PubMed ID: 7600805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scanning Electronic Microscopy Evaluation of the Roughness of the Stromal Bed After Deep Corneal Cut with the LDV Femtosecond Laser (Z6) (Ziemer) and the ONE Microkeratome (Moria).
    Varga Z; Bergin C; Roy S; Nicolas M; Tschuor P; Majo F
    Curr Eye Res; 2016 Oct; 41(10):1302-1309. PubMed ID: 26881295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Optimizing laser parameters for intrastromal incision with ultra-short laser pulses].
    Heisterkamp A; Ripken T; Lütkefels E; Drommer W; Lubatschowski H; Welling H; Ertmer W
    Ophthalmologe; 2001 Jul; 98(7):623-8. PubMed ID: 11490739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of the femtosecond laser in the customization of corneal flaps in laser in situ keratomileusis.
    Slade SG
    Curr Opin Ophthalmol; 2007 Jul; 18(4):314-7. PubMed ID: 17568208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphologic and histopathologic changes in the rabbit cornea produced by femtosecond laser-assisted multilayer intrastromal ablation.
    Zhang ZY; Chu RY; Zhou XT; Dai JH; Sun XH; Hoffman MR; Zhang XR
    Invest Ophthalmol Vis Sci; 2009 May; 50(5):2147-53. PubMed ID: 19136715
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mass spectrometry analysis of the by-products of intrastromal photorefractive keratectomy.
    Habib MS; Speaker MG; Schnatter WF
    Ophthalmic Surg Lasers; 1995; 26(5):481-3. PubMed ID: 8963863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser.
    Salomão MQ; Ambrósio R; Wilson SE
    J Cataract Refract Surg; 2009 Oct; 35(10):1756-60. PubMed ID: 19781472
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ablation rate of human corneal epithelium and Bowman's layer with the excimer laser (193 nm).
    Seiler T; Kriegerowski M; Schnoy N; Bende T
    Refract Corneal Surg; 1990; 6(2):99-102. PubMed ID: 2248922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Posterior capsule polishing with the neodymium:YLF picosecond laser: model eye study.
    Hanuch OE; Agrawal VB; Papernov S; del Cerro M; Aquavella JV
    J Cataract Refract Surg; 1997 Dec; 23(10):1561-71. PubMed ID: 9456417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Femtosecond laser LASIK flap preparation with conical incision and positional spikes.
    Jonas JB; Vossmerbaeumer U
    J Cataract Refract Surg; 2004 May; 30(5):1107-8. PubMed ID: 15130651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.