BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 8895661)

  • 1. smaug protein represses translation of unlocalized nanos mRNA in the Drosophila embryo.
    Smibert CA; Wilson JE; Kerr K; Macdonald PM
    Genes Dev; 1996 Oct; 10(20):2600-9. PubMed ID: 8895661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smaug, a novel and conserved protein, contributes to repression of nanos mRNA translation in vitro.
    Smibert CA; Lie YS; Shillinglaw W; Henzel WJ; Macdonald PM
    RNA; 1999 Dec; 5(12):1535-47. PubMed ID: 10606265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glorund, a Drosophila hnRNP F/H homolog, is an ovarian repressor of nanos translation.
    Kalifa Y; Huang T; Rosen LN; Chatterjee S; Gavis ER
    Dev Cell; 2006 Mar; 10(3):291-301. PubMed ID: 16516833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oskar allows nanos mRNA translation in Drosophila embryos by preventing its deadenylation by Smaug/CCR4.
    Zaessinger S; Busseau I; Simonelig M
    Development; 2006 Nov; 133(22):4573-83. PubMed ID: 17050620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smaug assembles an ATP-dependent stable complex repressing nanos mRNA translation at multiple levels.
    Jeske M; Moritz B; Anders A; Wahle E
    EMBO J; 2011 Jan; 30(1):90-103. PubMed ID: 21081899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression.
    Nelson MR; Leidal AM; Smibert CA
    EMBO J; 2004 Jan; 23(1):150-9. PubMed ID: 14685270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Nanos gradient in Drosophila embryos is generated by translational regulation.
    Dahanukar A; Wharton RP
    Genes Dev; 1996 Oct; 10(20):2610-20. PubMed ID: 8895662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.
    Chen L; Dumelie JG; Li X; Cheng MH; Yang Z; Laver JD; Siddiqui NU; Westwood JT; Morris Q; Lipshitz HD; Smibert CA
    Genome Biol; 2014 Jan; 15(1):R4. PubMed ID: 24393533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational regulation of nanos by RNA localization.
    Gavis ER; Lehmann R
    Nature; 1994 May; 369(6478):315-8. PubMed ID: 7514276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smaug, a novel RNA-binding protein that operates a translational switch in Drosophila.
    Dahanukar A; Walker JA; Wharton RP
    Mol Cell; 1999 Aug; 4(2):209-18. PubMed ID: 10488336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Translational repression of the
    Götze M; Dufourt J; Ihling C; Rammelt C; Pierson S; Sambrani N; Temme C; Sinz A; Simonelig M; Wahle E
    RNA; 2017 Oct; 23(10):1552-1568. PubMed ID: 28701521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A conserved 90 nucleotide element mediates translational repression of nanos RNA.
    Gavis ER; Lunsford L; Bergsten SE; Lehmann R
    Development; 1996 Sep; 122(9):2791-800. PubMed ID: 8787753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. microRNA-independent recruitment of Argonaute 1 to nanos mRNA through the Smaug RNA-binding protein.
    Pinder BD; Smibert CA
    EMBO Rep; 2013 Jan; 14(1):80-6. PubMed ID: 23184089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overlapping but distinct RNA elements control repression and activation of nanos translation.
    Crucs S; Chatterjee S; Gavis ER
    Mol Cell; 2000 Mar; 5(3):457-67. PubMed ID: 10882131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of the posterior determinant Nanos is spatially restricted by a novel cotranslational regulatory mechanism.
    Clark IE; Wyckoff D; Gavis ER
    Curr Biol; 2000 Oct; 10(20):1311-4. PubMed ID: 11069116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smaug recruits the CCR4/POP2/NOT deadenylase complex to trigger maternal transcript localization in the early Drosophila embryo.
    Semotok JL; Cooperstock RL; Pinder BD; Vari HK; Lipshitz HD; Smibert CA
    Curr Biol; 2005 Feb; 15(4):284-94. PubMed ID: 15723788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos.
    Jeske M; Meyer S; Temme C; Freudenreich D; Wahle E
    J Biol Chem; 2006 Sep; 281(35):25124-33. PubMed ID: 16793774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role for mRNA localization in translational activation but not spatial restriction of nanos RNA.
    Bergsten SE; Gavis ER
    Development; 1999 Feb; 126(4):659-69. PubMed ID: 9895314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A CCHC metal-binding domain in Nanos is essential for translational regulation.
    Curtis D; Treiber DK; Tao F; Zamore PD; Williamson JR; Lehmann R
    EMBO J; 1997 Feb; 16(4):834-43. PubMed ID: 9049312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA binding proteins Smaug and Cup induce CCR4-NOT-dependent deadenylation of the nanos mRNA in a reconstituted system.
    Pekovic F; Rammelt C; Kubíková J; Metz J; Jeske M; Wahle E
    Nucleic Acids Res; 2023 May; 51(8):3950-3970. PubMed ID: 36951092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.