These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 88960)

  • 1. [Dynamic model of protein behavior in water. Possible mechanism of association and dissociation of specific complexes].
    Kiaiviariainen AI
    Biofizika; 1979; 24(3):419-25. PubMed ID: 88960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active site loop motion in triosephosphate isomerase: T-jump relaxation spectroscopy of thermal activation.
    Desamero R; Rozovsky S; Zhadin N; McDermott A; Callender R
    Biochemistry; 2003 Mar; 42(10):2941-51. PubMed ID: 12627960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Dynamic model of protein behavior in water].
    Käiväräinen AI
    Biofizika; 1975; 20(6):967-71. PubMed ID: 1203311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered ligand binding properties and enhanced stability of a constitutively active estrogen receptor: evidence that an open pocket conformation is required for ligand interaction.
    Carlson KE; Choi I; Gee A; Katzenellenbogen BS; Katzenellenbogen JA
    Biochemistry; 1997 Dec; 36(48):14897-905. PubMed ID: 9398213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations of ligand association and dissociation rates in the "open" and "closed" states of myoglobin.
    Tian WD; Sage JT; Champion PM
    J Mol Biol; 1993 Sep; 233(1):155-66. PubMed ID: 8377182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical aspects of the biological catch bond.
    Prezhdo OV; Pereverzev YV
    Acc Chem Res; 2009 Jun; 42(6):693-703. PubMed ID: 19331389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands.
    Szegletes T; Mallender WD; Rosenberry TL
    Biochemistry; 1998 Mar; 37(12):4206-16. PubMed ID: 9521743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecularity creates nonstandard protein ligands.
    Piekarska B; Rybarska J; Stopa B; Zemanek G; Król M; Roterman I; Konieczny L
    Acta Biochim Pol; 1999; 46(4):841-51. PubMed ID: 10824851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions.
    Rahuel-Clermont S; French CA; Kaarsholm NC; Dunn MF; Chou CI
    Biochemistry; 1997 May; 36(19):5837-45. PubMed ID: 9153424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Salt effects on polyelectrolyte-ligand binding: comparison of Poisson-Boltzmann, and limiting law/counterion binding models.
    Sharp KA; Friedman RA; Misra V; Hecht J; Honig B
    Biopolymers; 1995 Aug; 36(2):245-62. PubMed ID: 7492748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic evaluation of a covalently bonded transition state analogue inhibitor: inhibition of beta-lactamases by phosphonates.
    Nagarajan R; Pratt RF
    Biochemistry; 2004 Aug; 43(30):9664-73. PubMed ID: 15274621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards the mechanism of trimeric purine nucleoside phosphorylases: stopped-flow studies of binding of multisubstrate analogue inhibitor - 2-amino-9-[2-(phosphonomethoxy)ethyl]-6-sulfanylpurine.
    Wielgus-Kutrowska B; Antosiewicz JM; Długosz M; Holý A; Bzowska A
    Biophys Chem; 2007 Feb; 125(2-3):260-8. PubMed ID: 16989940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of protein folding psi values.
    Bodenreider C; Kiefhaber T
    J Mol Biol; 2005 Aug; 351(2):393-401. PubMed ID: 16005895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of enzyme motions by solution NMR relaxation dispersion.
    Loria JP; Berlow RB; Watt ED
    Acc Chem Res; 2008 Feb; 41(2):214-21. PubMed ID: 18281945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of protein function by exogenous ligands in protein cavities: CO binding to a myoglobin cavity mutant containing unnatural proximal ligands.
    Decatur SM; DePillis GD; Boxer SG
    Biochemistry; 1996 Apr; 35(13):3925-32. PubMed ID: 8672423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state.
    Mayer ML; Olson R; Gouaux E
    J Mol Biol; 2001 Aug; 311(4):815-36. PubMed ID: 11518533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computation of the contribution from the cavity effect to protein-ligand binding free energy.
    Grigoriev FV; Gabin SN; Romanov AN; Sulimov VB
    J Phys Chem B; 2008 Dec; 112(48):15355-60. PubMed ID: 18991438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.