These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 8896746)
1. Structure of bacteriochlorophyll aggregates in chlorosomes of green bacteria: a spectral hole burning study. Novoderezhkin VI; Fetisova ZG Biochem Mol Biol Int; 1996 Oct; 40(2):243-52. PubMed ID: 8896746 [TBL] [Abstract][Full Text] [Related]
2. Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Fetisova Z; Freiberg A; Mauring K; Novoderezhkin V; Taisova A; Timpmann K Biophys J; 1996 Aug; 71(2):995-1010. PubMed ID: 8842237 [TBL] [Abstract][Full Text] [Related]
3. Q-band hyperchromism and B-band hypochromism of bacteriochlorophyll c as a tool for investigation of the oligomeric structure of chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus. Yakovlev AG; Taisova AS; Fetisova ZG Photosynth Res; 2020 Dec; 146(1-3):95-108. PubMed ID: 31939070 [TBL] [Abstract][Full Text] [Related]
4. Exciton levels structure of antenna bacteriochlorophyll c aggregates in the green bacterium Chloroflexus aurantiacus as probed by 1.8-293 K fluorescence spectroscopy. Mauring K; Novoderezhkin V; Taisova A; Fetisova Z FEBS Lett; 1999 Aug; 456(2):239-42. PubMed ID: 10456316 [TBL] [Abstract][Full Text] [Related]
5. Bacteriochlorophyll aggregates self-assembled on functionalized gold nanorod cores as mimics of photosynthetic chlorosomal antennae: a single molecule study. Furumaki S; Vacha F; Hirata S; Vacha M ACS Nano; 2014 Mar; 8(3):2176-82. PubMed ID: 24559170 [TBL] [Abstract][Full Text] [Related]
6. High-pressure and stark hole-burning studies of chlorosome antennas from Chlorobium tepidum. Wu HM; Rätsep M; Young CS; Jankowiak R; Blankenship RE; Small GJ Biophys J; 2000 Sep; 79(3):1561-72. PubMed ID: 10969017 [TBL] [Abstract][Full Text] [Related]
7. Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum. Prokhorenko VI; Steensgaard DB; Holzwarth AR Biophys J; 2000 Oct; 79(4):2105-20. PubMed ID: 11023914 [TBL] [Abstract][Full Text] [Related]
8. [A comparative study of the fluorescence properties of the chlorosomal antenna of the green bacterium from the family Oscillochloridaceae and the members from two other families of green bacteria]. Taisova AS; Lukashev EP; Keppen OI; Fetisova ZG Biofizika; 2005; 50(2):271-6. PubMed ID: 15856984 [TBL] [Abstract][Full Text] [Related]
9. Exciton theory for supramolecular chlorosomal aggregates: 1. Aggregate size dependence of the linear spectra. Prokhorenko VI; Steensgaard DB; Holzwarth AR Biophys J; 2003 Nov; 85(5):3173-86. PubMed ID: 14581217 [TBL] [Abstract][Full Text] [Related]
10. Antenna size dependent exciton dynamics in the chlorosomal antenna of the green bacterium Chloroflexus aurantiacus. Fetisova Z; Freiberg A; Novoderezhkin V; Taisova A; Timpmann K FEBS Lett; 1996 Apr; 383(3):233-6. PubMed ID: 8925903 [TBL] [Abstract][Full Text] [Related]
11. Temperature shift effect on the Chlorobaculum tepidum chlorosomes. Tang JK; Xu Y; Muhlmann GM; Zare F; Khin Y; Tam SW Photosynth Res; 2013 May; 115(1):23-41. PubMed ID: 23435510 [TBL] [Abstract][Full Text] [Related]
12. Experimental evidence of oligomeric organization of antenna bacteriochlorophyll c in green bacterium Chloroflexus aurantiacus by spectral hole burning. Fetisova ZG; Mauring K FEBS Lett; 1992 Aug; 307(3):371-4. PubMed ID: 1644194 [TBL] [Abstract][Full Text] [Related]
13. The lamellar spacing in self-assembling bacteriochlorophyll aggregates is proportional to the length of the esterifying alcohol. Psencík J; Torkkeli M; Zupcanová A; Vácha F; Serimaa RE; Tuma R Photosynth Res; 2010 Jun; 104(2-3):211-9. PubMed ID: 20306134 [TBL] [Abstract][Full Text] [Related]
14. Investigation on chlorosomal antenna geometries: tube, lamella and spiral-type self-aggregates. Linnanto JM; Korppi-Tommola JE Photosynth Res; 2008 Jun; 96(3):227-45. PubMed ID: 18443917 [TBL] [Abstract][Full Text] [Related]
15. Intensity borrowing via excitonic couplings among soret and Q(y) transitions of bacteriochlorophylls in the pigment aggregates of chlorosomes, the light-harvesting antennae of green sulfur bacteria. Shibata Y; Tateishi S; Nakabayashi S; Itoh S; Tamiaki H Biochemistry; 2010 Sep; 49(35):7504-15. PubMed ID: 20701269 [TBL] [Abstract][Full Text] [Related]
16. Internal structure of chlorosomes from brown-colored chlorobium species and the role of carotenoids in their assembly. Psencík J; Arellano JB; Ikonen TP; Borrego CM; Laurinmäki PA; Butcher SJ; Serimaa RE; Tuma R Biophys J; 2006 Aug; 91(4):1433-40. PubMed ID: 16731553 [TBL] [Abstract][Full Text] [Related]
17. A seventh bacterial chlorophyll driving a large light-harvesting antenna. Harada J; Mizoguchi T; Tsukatani Y; Noguchi M; Tamiaki H Sci Rep; 2012; 2():671. PubMed ID: 22993696 [TBL] [Abstract][Full Text] [Related]
18. Limitations of Linear Dichroism Spectroscopy for Elucidating Structural Issues of Light-Harvesting Aggregates in Chlorosomes. Günther LM; Knoester J; Köhler J Molecules; 2021 Feb; 26(4):. PubMed ID: 33572047 [TBL] [Abstract][Full Text] [Related]
19. Absorption linear dichroism measured directly on a single light-harvesting system: the role of disorder in chlorosomes of green photosynthetic bacteria. Furumaki S; Vacha F; Habuchi S; Tsukatani Y; Bryant DA; Vacha M J Am Chem Soc; 2011 May; 133(17):6703-10. PubMed ID: 21476570 [TBL] [Abstract][Full Text] [Related]
20. Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photosynthetic bacteria. Malina T; Koehorst R; Bína D; Pšenčík J; van Amerongen H Sci Rep; 2021 Apr; 11(1):8354. PubMed ID: 33863954 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]