These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 8897139)
1. New method for evaluation of hard contact lens materials with regard to cell injury by dynamic contact. Iguchi I; Kamiyama K; Ohashi T; Wang X; Imanishi J J Biomed Mater Res; 1996 Nov; 32(3):349-54. PubMed ID: 8897139 [TBL] [Abstract][Full Text] [Related]
2. Influence of dynamic contact of hard contact lens materials on corneal epithelial cells examined by rose bengal staining. Iguchi I; Kamiyama K; Imamichi M; Ohashi T; He J; Wang X; Imanishi J Curr Eye Res; 1996 Jun; 15(6):647-52. PubMed ID: 8670768 [TBL] [Abstract][Full Text] [Related]
3. Metabolic changes in the corneal epithelium resulting from hard contact lens wear. Tsubota K; Laing RA Cornea; 1992 Mar; 11(2):121-6. PubMed ID: 1582214 [TBL] [Abstract][Full Text] [Related]
4. Gas-to-liquid permeation in silicon-containing, crosslinked, glassy copolymers of methyl methacrylate. Yang WM; Peppas NA Biomaterials; 1983 Oct; 4(4):281-4. PubMed ID: 6640054 [TBL] [Abstract][Full Text] [Related]
5. Morphological and biochemical evaluation for rigid gas permeable contact lens extended wear on rabbit corneal epithelium. Ichijima H; Ohashi J; Petroll WM; Cavanagh HD CLAO J; 1993 Apr; 19(2):121-8. PubMed ID: 8495562 [TBL] [Abstract][Full Text] [Related]
6. Non-contact specular microscopic observation for early response of corneal endothelium after contact lens wear. Ohya S; Nishimaki K; Nakayasu K; Kanai A CLAO J; 1996 Apr; 22(2):122-6. PubMed ID: 8728619 [TBL] [Abstract][Full Text] [Related]
7. Corneal topographic changes after refitting polymethylmethacrylate contact lens wearers into rigid gas permeable materials. Novo AG; Pavlopoulos G; Feldman ST CLAO J; 1995 Jan; 21(1):47-51. PubMed ID: 7712607 [TBL] [Abstract][Full Text] [Related]
8. Rigid gas-permeable contact lens base curve radius and transmissibility effects on corneal oxygen uptake. Fink BA; Mitchell GL; Hill RM Optom Vis Sci; 2006 Oct; 83(10):740-4. PubMed ID: 17041319 [TBL] [Abstract][Full Text] [Related]
9. Corneal edema with polymethylmethacrylate versus gas-permeable rigid polymer contact lenses of identical design. Finnemore VM; Korb JE J Am Optom Assoc; 1980 Mar; 51(3):271-4. PubMed ID: 7372986 [TBL] [Abstract][Full Text] [Related]
10. Oxygen transfer in the corneal-contact lens system. Garr-Peters JM; Ho CS Crit Rev Biomed Eng; 1987; 14(4):289-372. PubMed ID: 3319414 [TBL] [Abstract][Full Text] [Related]
11. Corneal endothelial changes associated with contact lens wear. MacRae SM; Matsuda M; Shellans S CLAO J; 1989; 15(1):82-7. PubMed ID: 2917404 [TBL] [Abstract][Full Text] [Related]
12. Corneal epithelial and aqueous humor acidification during in vivo contact lens wear in rabbits. Giasson C; Bonanno JA Invest Ophthalmol Vis Sci; 1994 Mar; 35(3):851-61. PubMed ID: 8125748 [TBL] [Abstract][Full Text] [Related]
13. Corneal oxygen need and gas permeable contact lenses. Mandell RB J Am Optom Assoc; 1982 Mar; 53(3):211-4. PubMed ID: 7077038 [TBL] [Abstract][Full Text] [Related]
14. Corneal epithelial response of the primate eye to gas permeable corneal contact lenses: a preliminary report. Bergmanson JP; Ruben M; Chu LW Cornea; 1984; 3(2):109-13. PubMed ID: 6536428 [TBL] [Abstract][Full Text] [Related]
15. Young's modulus measurements of gas permeable contact lens materials. Stevenson RW Optom Vis Sci; 1991 Feb; 68(2):142-5. PubMed ID: 2027654 [TBL] [Abstract][Full Text] [Related]