These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 8897152)

  • 1. A versatile three-iodine molecular building block leading to new radiopaque polymeric biomaterials.
    Benzina A; Kruft MA; van der Veen FH; Bär FH; Blezer R; Lindhout T; Koole LH
    J Biomed Mater Res; 1996 Nov; 32(3):459-66. PubMed ID: 8897152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on a new radiopaque polymeric biomaterial.
    Benzina A; Kruft MA; Bär F; van der Veen FH; Bastiaansen CW; Heijnen V; Reutelingsperger C; Koole LH
    Biomaterials; 1994 Nov; 15(14):1122-8. PubMed ID: 7893914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on radio-opaque polymeric biomaterials with potential applications to endovascular prostheses.
    Kruft MA; Benzina A; Blezer R; Koole LH
    Biomaterials; 1996 Sep; 17(18):1803-12. PubMed ID: 8879520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on two new radiopaque polymeric biomaterials.
    Kruft MA; Benzina A; Bär F; van der Veen FH; Bastiaansen CW; Blezer R; Lindhout T; Koole LH
    J Biomed Mater Res; 1994 Nov; 28(11):1259-66. PubMed ID: 7829555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical structure of methylmethacrylate-2-[2',3',5'-triiodobenzoyl]oxoethyl methacrylate copolymer, radio-opacity, in vitro and in vivo biocompatibility.
    Zaharia C; Zecheru T; Moreau MF; Pascaretti-Grizon F; Mabilleau G; Marculescu B; Filmon R; Cincu C; Staikos G; Chappard D
    Acta Biomater; 2008 Nov; 4(6):1762-9. PubMed ID: 18640083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability of radiopaque iodine-containing biomaterials.
    Aldenhof YB; Kruft MA; Pijpers AP; van der Veen FH; Bulstra SK; Kuijer R; Koole LH
    Biomaterials; 2002 Feb; 23(3):881-6. PubMed ID: 11774852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elimination of barium sulphate from acrylic bone cements. Use of two iodine-containing monomers.
    Artola A; Gurruchaga M; Vázquez B; San Román J; Goñi I
    Biomaterials; 2003 Oct; 24(22):4071-80. PubMed ID: 12834603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptide surface modification of P(HEMA-co-MMA)-b-PIB-b-P(HEMA-co-MMA) block copolymers.
    Ojha U; Feng D; Chandekar A; Whitten JE; Faust R
    Langmuir; 2009 Jun; 25(11):6319-27. PubMed ID: 19334689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterisation of poly(2-hydroxyethyl methacrylate) polyelectrolyte complexes.
    Rosso F; Barbarisi A; Barbarisi M; Giordano A; Ambrosio L
    J Mater Sci Mater Med; 2004 Jun; 15(6):679-86. PubMed ID: 15346735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The short-term blood biocompatibility of poly(hydroxyethyl methacrylate-co-methyl methacrylate) in an in vitro flow system measured by digital videomicroscopy.
    Desai NP; Hubbell JA
    J Biomater Sci Polym Ed; 1989; 1(2):123-46. PubMed ID: 2488848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on blood compatibility of terpolymers composed of methyl methacrylate, methoxypolyethyleneglycol methacrylate, and dimethylsiloxane methacrylate.
    Okamoto H; Osawa H; Nakashima S; Takahashi S; Kasemura T; Nozawa Y
    J Biomater Sci Polym Ed; 1998; 9(9):943-59. PubMed ID: 9747987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyethylenimine-immobilized core-shell nanoparticles: synthesis, characterization, and biocompatibility test.
    Ratanajanchai M; Soodvilai S; Pimpha N; Sunintaboon P
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():377-83. PubMed ID: 24268272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of nonbiofouling metal stent and in vitro studies on its hemocompatibility.
    Wang X; Miao J; Zhao H; Mao C; Chen X; Shen J
    J Biomater Appl; 2014 Jul; 29(1):14-25. PubMed ID: 24262304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.
    Dawlee S; Jayakrishnan A; Jayabalan M
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S243-50. PubMed ID: 18668209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically radiopaque hydrogels for nucleus pulposus replacement.
    Boelen EJ; van Hooy-Corstjens CS; Bulstra SK; van Ooij A; van Rhijn LW; Koole LH
    Biomaterials; 2005 Nov; 26(33):6674-83. PubMed ID: 15935467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new formulation of poly(MAOTIB) nanoparticles as an efficient contrast agent for in vivo X-ray imaging.
    Wallyn J; Anton N; Serra CA; Bouquey M; Collot M; Anton H; Weickert JL; Messaddeq N; Vandamme TF
    Acta Biomater; 2018 Jan; 66():200-212. PubMed ID: 29129788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents.
    Bayram C; Mizrak AK; Aktürk S; Kurşaklioğlu H; Iyisoy A; Ifran A; Denkbaş EB
    Biomed Mater; 2010 Oct; 5(5):055007. PubMed ID: 20844318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and characterization of sulfobetaine-containing terpolymer biomaterials.
    Heath DE; Cooper SL
    Acta Biomater; 2012 Aug; 8(8):2899-910. PubMed ID: 22503950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo tissue compatibility of two radio-opaque polymeric biomaterials.
    Kruft MA; van der Veen FH; Koole LH
    Biomaterials; 1997 Jan; 18(1):31-6. PubMed ID: 9003894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.