These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8897153)

  • 1. Endotoxin rejection by ultrafiltration through high-flux, hollow fiber filters.
    Yamamoto C; Kim ST
    J Biomed Mater Res; 1996 Nov; 32(3):467-71. PubMed ID: 8897153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endotoxin removal using 6,000 molecular weight cut-off polyacrylonitrile (PAN) and polysulfone (PS) hollow fiber ultrafilters.
    Evans-Strickfaden TT; Oshima KH; Highsmith AK; Ades EW
    PDA J Pharm Sci Technol; 1996; 50(3):154-7. PubMed ID: 8696778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amount of adsorbed albumin loss by dialysis membranes with protein adsorption.
    Tomisawa N; Yamashita AC
    J Artif Organs; 2009; 12(3):194-9. PubMed ID: 19894094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. No evidence for endotoxin transfer across high flux polysulfone membranes.
    Bommer J; Becker KP; Urbaschek R; Ritz E; Urbaschek B
    Clin Nephrol; 1987 Jun; 27(6):278-82. PubMed ID: 3608251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endotoxin adsorption of various dialysis membranes: in vitro study.
    Takemoto Y; Nakatani T; Sugimura K; Yoshimura R; Tsuchida K
    Artif Organs; 2003 Dec; 27(12):1134-7. PubMed ID: 14678429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of human recombinant erythropoietin on dialysis membranes in vitro.
    Mori H; Hiraoka K; Yorifuji R; Iwasaki T; Gomikawa S; Inagaki O; Inoue S; Takamitsu Y; Fujita Y
    Artif Organs; 1994 Oct; 18(10):725-8. PubMed ID: 7832652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leakage of Endotoxins through the Endotoxin Retentive Filter: An in vitro Study.
    Nozaki H; Tange Y; Inada Y; Uchino T; Azuma N
    Blood Purif; 2022; 51(10):831-839. PubMed ID: 35021168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembranous transport and adsorption of beta-2-microglobulin during hemodialysis using polysulfone, polyacrylonitrile, polymethylmethacrylate and cuprammonium rayon membranes.
    Klinke B; Röckel A; Abdelhamid S; Fiegel P; Walb D
    Int J Artif Organs; 1989 Nov; 12(11):697-702. PubMed ID: 2689356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro assessment of dialysis membrane as an endotoxin transfer barrier: geometry, morphology, and permeability.
    Henrie M; Ford C; Andersen M; Stroup E; Diaz-Buxo J; Madsen B; Britt D; Ho CH
    Artif Organs; 2008 Sep; 32(9):701-10. PubMed ID: 18684209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential transfer of endotoxin across high-flux polysulfone membranes.
    Bommer J; Becker KP; Urbaschek R
    J Am Soc Nephrol; 1996 Jun; 7(6):883-8. PubMed ID: 8793797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro studies of endotoxin transfer across cellulosic and noncellulosic dialysis membranes. I. Radiolabeled endotoxin.
    Ureña P; Herbelin A; Basile C; Zingraff J; Man NK; Drüeke T
    Contrib Nephrol; 1989; 74():71-8. PubMed ID: 2702149
    [No Abstract]   [Full Text] [Related]  

  • 12. Differences in the adsorption of nafamostat mesilate between polyester-polymer alloy and polysulfone membranes.
    Goto S; Ookawara S; Saito A
    J Artif Organs; 2017 Jun; 20(2):138-144. PubMed ID: 27896500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In search of sterile, endotoxin-free dialysate.
    Gault MH; Duffett AL; Murphy JF; Purchase LH
    ASAIO J; 1992; 38(3):M431-5. PubMed ID: 1457896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorption of low molecular weight proteins to hemodialysis membranes: experimental results and simulations.
    Valette P; Thomas M; Déjardin P
    Biomaterials; 1999 Sep; 20(17):1621-34. PubMed ID: 10482417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Looking beyond endotoxin: a comparative study of pyrogen retention by ultrafilters used for the preparation of sterile dialyis fluid.
    Glorieux G; Hulko M; Speidel R; Brodbeck K; Krause B; Vanholder R
    Sci Rep; 2014 Sep; 4():6390. PubMed ID: 25227511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo assessment of intact parathyroid hormone adsorption by different dialysis membranes during hemodialysis.
    Balducci A; Coen G; Manni M; Perruzza I; Fassino V; Sardella D; Grandi F
    Artif Organs; 2004 Dec; 28(12):1067-75. PubMed ID: 15554934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dialysis membranes and PTH changes during hemodialysis in patients with secondary hyperparathyroidism.
    De Francisco AL; Amado JA; Prieto M; Alcalde G; Sanz de Castro S; Ruiz JC; Morales P; Arias M
    Nephron; 1994; 66(4):442-6. PubMed ID: 8015649
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of the basic principles determining the performance of several high-flux dialyzers.
    Jindal KK; McDougall J; Woods B; Nowakowski L; Goldstein MB
    Am J Kidney Dis; 1989 Dec; 14(6):507-11. PubMed ID: 2688406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leukocytes, eosinophils and complement function during hemodialysis with polysulphone and polymethylmethacrylate membranes: comparison with cuprophan and polyacrylonitrile.
    Bergesio F; Monzani G; Manescalchi F; Boccabianca I; Passaleva A; Frizzi V
    Blood Purif; 1988; 6(1):16-26. PubMed ID: 3345242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes.
    Dahe GJ; Teotia RS; Kadam SS; Bellare JR
    Biomaterials; 2011 Jan; 32(2):352-65. PubMed ID: 20888631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.