These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 8897401)

  • 21. Renal and sympathoadrenal responses in space.
    Christensen NJ; Drummer C; Norsk P
    Am J Kidney Dis; 2001 Sep; 38(3):679-83. PubMed ID: 11532706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Body volume changes during simulated weightlessness: an overview.
    Montgomery LD
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A80-5. PubMed ID: 3675510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gravitational stress and fluid volume regulation: a suggestion for revision of current hypotheses.
    Norsk P
    J Gravit Physiol; 1997 Jul; 4(2):P85-8. PubMed ID: 11540709
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiovascular and fluid volume control in humans in space.
    Norsk P
    Curr Pharm Biotechnol; 2005 Aug; 6(4):325-30. PubMed ID: 16101471
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data.
    Convertino VA
    J Gravit Physiol; 1998 Jul; 5(1):P85-8. PubMed ID: 11542376
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Space shuttle inflight and postflight fluid shifts measured by leg volume changes.
    Moore TP; Thornton WE
    Aviat Space Environ Med; 1987 Sep; 58(9 Pt 2):A91-6. PubMed ID: 3675513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [The progress in research on changes of central venous pressure under simulated weightlessness and microgravity].
    Wang DS; Sun L; Xiang QL; Ren W
    Space Med Med Eng (Beijing); 1999 Dec; 12(6):459-63. PubMed ID: 12434816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiovascular deconditioning and venous air embolism in simulated microgravity in the rat.
    Robinson RR; Doursout MF; Chelly JE; Powell MR; Little TM; Butler BD
    Aviat Space Environ Med; 1996 Sep; 67(9):835-40. PubMed ID: 9025798
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Body fluid and electrolyte content in rat tissues after space flight in the "Space-2044" spacecraft].
    Lavrova EA; Natochin IuV; Serova LV; Snetkova EV
    Aviakosm Ekolog Med; 1993; 27(1):43-7. PubMed ID: 8220340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-duration bed rest as an analog to microgravity.
    Hargens AR; Vico L
    J Appl Physiol (1985); 2016 Apr; 120(8):891-903. PubMed ID: 26893033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biofluid modeling of the coupled eye-brain system and insights into simulated microgravity conditions.
    Salerni F; Repetto R; Harris A; Pinsky P; Prud'homme C; Szopos M; Guidoboni G
    PLoS One; 2019; 14(8):e0216012. PubMed ID: 31412033
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computer systems analysis of spaceflight induced changes in left ventricular mass.
    Summers RL; Martin DS; Meck JV; Coleman TG
    Comput Biol Med; 2007 Mar; 37(3):358-63. PubMed ID: 16808910
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Circulatory and hormonal changes induced by microgravity].
    Gharib C; Güell A; Pourcelot L; Bost R
    J Physiol (Paris); 1985; 80(3):182-8. PubMed ID: 4087210
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prophylactic [correction of prophylatic] effects of intermittent acceleration against physiological deconditioning in simulated weightlessness.
    Shulzhenko EB; Vil-Vilyams IF; Aleksandrova EA; Gogolev KI
    Life Sci Space Res; 1979; 17():187-92. PubMed ID: 12008704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluid shift versus body size: changes of hematological parameters and body fluid volume in hindlimb-unloaded mice, rats and rabbits.
    Andreev-Andrievskiy AA; Popova AS; Lagereva EA; Vinogradova OL
    J Exp Biol; 2018 Sep; 221(Pt 17):. PubMed ID: 29950449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.
    Gerzer R; Heer M
    Curr Pharm Biotechnol; 2005 Aug; 6(4):299-304. PubMed ID: 16101468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Choroidal responses in microgravity. (SLS-1, SLS-2 and hindlimb-suspension experiments).
    Gabrion J; Herbute S; Oliver J; Maurel D; Davet J; Clavel B; Gharib C; Fareh J; Fagette S; Nguyen B
    Acta Astronaut; 1995; 36(8-12):439-48. PubMed ID: 11540975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid shifts and muscle function in humans during acute simulated weightlessness.
    Hargens AR; Tipton CM; Gollnick PD; Mubarak SJ; Tucker BJ; Akeson WH
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Apr; 54(4):1003-9. PubMed ID: 6853275
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Renal adjustments to microgravity.
    Norsk P
    Pflugers Arch; 2000; 441(2-3 Suppl):R62-5. PubMed ID: 11200982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Body mass changes, energy, and protein metabolism in space.
    Heer M; De Santo NG; Cirillo M; Drummer C
    Am J Kidney Dis; 2001 Sep; 38(3):691-5. PubMed ID: 11532708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.