These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8897472)

  • 1. Assessment of energy metabolism in the developing brain following aglycemic hypoxia by 1H and 31P NMR.
    Brooks KJ; Clark JB; Bates TE
    Neurochem Res; 1996 Sep; 21(9):1089-95. PubMed ID: 8897472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium-mediated damage following hypoxia in cerebral cortex ex vivo studied by NMR spectroscopy. Evidence for direct involvement of voltage-gated Ca(2+)-channels.
    Brooks KJ; Kauppinen RA
    Neurochem Int; 1993 Nov; 23(5):441-50. PubMed ID: 7902749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3-Hydroxybutyrate aids the recovery of the energy state from aglycaemic hypoxia of adult but not neonatal rat brain slices.
    Brooks KJ; Clark JB; Bates TE
    J Neurochem; 1998 May; 70(5):1986-90. PubMed ID: 9572283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral energy metabolism and intracellular pH during severe hypoxia and recovery: a study using 1H, 31P, and 1H [13C] nuclear magnetic resonance spectroscopy in the guinea pig cerebral cortex in vitro.
    Kauppinen RA; Williams SR
    J Neurosci Res; 1990 Jul; 26(3):356-69. PubMed ID: 2398514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [31P]/[1H] nuclear magnetic resonance study of mitigating effects of GYKI 52466 on kainate-induced metabolic impairment in perfused rat cerebrocortical slices.
    Tang P; Liachenko S; Melick JA; Xu Y
    Epilepsia; 1998 Jun; 39(6):577-83. PubMed ID: 9637598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular chelation of calcium prevents cell damage following severe hypoxia in the rat cerebral cortex as studied by NMR spectroscopy ex vivo.
    Gröhn O; Kauppinen R
    Cell Calcium; 1996 Dec; 20(6):509-14. PubMed ID: 8985596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of monocarboxylates as energy substrates other than glucose in rat brain slices and the effect of selective glial poisoning - a 31P NMR study.
    Yoshioka K; Nisimaru N; Yanai S; Shimoda H; Yamada K
    Neurosci Res; 2000 Mar; 36(3):215-26. PubMed ID: 10683525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study.
    Braun KP; van Eijsden P; Vandertop WP; de Graaf RA; Gooskens RH; Tulleken KA; Nicolay K
    J Neurosurg; 1999 Oct; 91(4):660-8. PubMed ID: 10507389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral metabolism in streptozotocin-diabetic rats: an in vivo magnetic resonance spectroscopy study.
    Biessels GJ; Braun KP; de Graaf RA; van Eijsden P; Gispen WH; Nicolay K
    Diabetologia; 2001 Mar; 44(3):346-53. PubMed ID: 11317667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of acetyl-L-carnitine on recovery of brain phosphorus metabolites and lactic acid level during reperfusion after cerebral ischemia in the rat--study by 13P- and 1H-NMR spectroscopy.
    Aureli T; Miccheli A; Di Cocco ME; Ghirardi O; Giuliani A; Ramacci MT; Conti F
    Brain Res; 1994 Apr; 643(1-2):92-9. PubMed ID: 8032936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of intracellular pH in cortical brain slices following anoxia studied by nuclear magnetic resonance spectroscopy: role of lactate removal, extracellular sodium and sodium/hydrogen exchange.
    Pirttilä TR; Kauppinen RA
    Neuroscience; 1992; 47(1):155-64. PubMed ID: 1315933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lactate efflux and intracellular pH during severe hypoxia in rat cerebral cortex in vitro studied by nuclear magnetic resonance spectroscopy.
    Pirttilä TR; Kauppinen RA
    Neurosci Lett; 1994 Aug; 178(1):111-4. PubMed ID: 7816318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of N-methyl-D-aspartate on [Ca2+]i and the energy state in the brain by 19F- and 31P-nuclear magnetic resonance spectroscopy.
    Ben-Yoseph O; Bachelard HS; Badar-Goffer RS; Dolin SJ; Morris PG
    J Neurochem; 1990 Oct; 55(4):1446-9. PubMed ID: 2204683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neither moderate hypoxia nor mild hypoglycaemia alone causes any significant increase in cerebral [Ca2+]i: only a combination of the two insults has this effect. A 31P and 19F NMR study.
    Badar-Goffer RS; Thatcher NM; Morris PG; Bachelard HS
    J Neurochem; 1993 Dec; 61(6):2207-14. PubMed ID: 8245972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hypoglycemic encephalopathy upon amino acids, high-energy phosphates, and pHi in the rat brain in vivo: detection by sequential 1H and 31P NMR spectroscopy.
    Behar KL; den Hollander JA; Petroff OA; Hetherington HP; Prichard JW; Shulman RG
    J Neurochem; 1985 Apr; 44(4):1045-55. PubMed ID: 2857770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular calcium dynamics and cellular energetics in ischemic NG108-15 cells studied by concurrent 31P/19F and 23Na double-quantum filtered NMR spectroscopy.
    Tauskela JS; Shoubridge EA
    J Neurochem; 1996 Jan; 66(1):266-76. PubMed ID: 8522964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed increase in intracellular Na+ in cerebral cortical slices during severe hypoxia as measured by double quantum filtered 23Na+ NMR.
    Brooks KJ; Pirttilä TR; Kauppinen RA
    Neuroreport; 1993 Feb; 4(2):139-42. PubMed ID: 8453050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction in water and metabolite apparent diffusion coefficients during energy failure involves cation-dependent mechanisms. A proton nuclear magnetic resonance study of rat cortical brain slices.
    Hakumäki JM; Pirttilä TR; Kauppinen RA
    J Cereb Blood Flow Metab; 2000 Feb; 20(2):405-11. PubMed ID: 10698079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes during ischaemia.
    Crockard HA; Gadian DG; Frackowiak RS; Proctor E; Allen K; Williams SR; Russell RW
    J Cereb Blood Flow Metab; 1987 Aug; 7(4):394-402. PubMed ID: 3611203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral energy metabolism during hypoxaemia. A 31P and 1H magnetic resonance study.
    Garde K; Rostrup E; Toft PB; Henriksen O
    Acta Physiol Scand; 1995 Jun; 154(2):185-91. PubMed ID: 7572214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.