BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 8897822)

  • 1. Changes in ATP, phosphocreatine, and 16 metabolites in muscle stimulated for up to 96 hours.
    Salmons S; Jarvis JC; Mayne CN; Chi MM; Manchester JK; McDougal DB; Lowry OH
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1167-71. PubMed ID: 8897822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of fatigable and fatigue-resistant fibres of rabbit muscle to low-frequency stimulation.
    Cadefau JA; Parra J; Cussó R; Heine G; Pette D
    Pflugers Arch; 1993 Sep; 424(5-6):529-37. PubMed ID: 8255737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaerobic ATP provision, glycogenolysis and glycolysis in rat slow-twitch muscle during tetanic contractions.
    Spriet LL
    Pflugers Arch; 1990 Nov; 417(3):278-84. PubMed ID: 2148818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic stimulation of mammalian muscle: changes in metabolite concentrations in individual fibers.
    Henriksson J; Salmons S; Chi MY; Hintz CS; Lowry OH
    Am J Physiol; 1988 Oct; 255(4 Pt 1):C543-51. PubMed ID: 3177628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolite changes in individual rat muscle fibers during stimulation.
    Hintz CS; Chi MM; Fell RD; Ivy JL; Kaiser KK; Lowry CV; Lowry OH
    Am J Physiol; 1982 Mar; 242(3):C218-28. PubMed ID: 7065170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic stimulation of mammalian muscle: enzyme and metabolic changes in individual fibres.
    Henriksson J; Salmons S; Lowry OH
    Biomed Biochim Acta; 1989; 48(5-6):S445-54. PubMed ID: 2527028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle metabolism, contraction force and glycogen utilization during prolonged electrical stimulation in humans.
    Hultman E; Spriet LL
    J Physiol; 1986 May; 374():493-501. PubMed ID: 3746702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early metabolic adaptations of rabbit fast-twitch muscle to chronic low-frequency stimulation.
    Green HJ; Pette D
    Eur J Appl Physiol Occup Physiol; 1997; 75(5):418-24. PubMed ID: 9189729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ATP utilization and provision in fast-twitch skeletal muscle during tetanic contractions.
    Spriet LL
    Am J Physiol; 1989 Oct; 257(4 Pt 1):E595-605. PubMed ID: 2801938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolite patterns related to exhaustion, recovery and transformation of chronically stimulated rabbit fast-twitch muscle.
    Green HJ; Düsterhöft S; Dux L; Pette D
    Pflugers Arch; 1992 Mar; 420(3-4):359-66. PubMed ID: 1598191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of fructose 2,6-bisphosphate in the control of glycolysis. Stimulation of glycogen synthesis by lactate in the isolated working rat heart.
    Depré C; Veitch K; Hue L
    Acta Cardiol; 1993; 48(1):147-64. PubMed ID: 8447185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epinephrine infusion enhances muscle glycogenolysis during prolonged electrical stimulation.
    Spriet LL; Ren JM; Hultman E
    J Appl Physiol (1985); 1988 Apr; 64(4):1439-44. PubMed ID: 3378979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced ability of skeletal muscle containing cyclocreatine phosphate to sustain ATP levels during ischemia following beta-adrenergic stimulation.
    Turner DM; Walker JB
    J Biol Chem; 1987 May; 262(14):6605-9. PubMed ID: 3571272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of anaerobic ATP-generating pathways in trout fast-twitch skeletal muscle.
    Dobson GP; Parkhouse WS; Hochachka PW
    Am J Physiol; 1987 Jul; 253(1 Pt 2):R186-94. PubMed ID: 3605383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. G-1,6-P2, glycolysis, and energy metabolism during circulatory occlusion in human skeletal muscle.
    Katz A
    Am J Physiol; 1988 Aug; 255(2 Pt 1):C140-4. PubMed ID: 3407759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of reduced glycogen level on glycogenolysis during short-term stimulation in man.
    Ren JM; Broberg S; Sahlin K; Hultman E
    Acta Physiol Scand; 1990 Jul; 139(3):467-74. PubMed ID: 2239350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of tissue lactic acid and ATP levels on postischemic recovery in rabbit skeletal muscle.
    Hagberg H; Jennische E; Haljamäe H
    Circ Shock; 1985; 16(4):363-74. PubMed ID: 3836028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic energy provision in aged skeletal muscle during tetanic stimulation.
    Campbell CB; Marsh DR; Spriet LL
    J Appl Physiol (1985); 1991 Apr; 70(4):1787-95. PubMed ID: 1829080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolytic and oxidative energy metabolism and contraction characteristics of intact human muscle.
    Hultman E; Sjöholm H; Sahlin K; Edström L
    Ciba Found Symp; 1981; 82():19-40. PubMed ID: 6271506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human skeletal muscle energy metabolism during and after complete tourniquet ischemia.
    Haljamäe H; Enger E
    Ann Surg; 1975 Jul; 182(1):9-14. PubMed ID: 1147714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.