BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 8898209)

  • 1. Crystal structure at 2.4 angstroms resolution of the complex of transducin betagamma and its regulator, phosducin.
    Gaudet R; Bohm A; Sigler PB
    Cell; 1996 Nov; 87(3):577-88. PubMed ID: 8898209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosducin induces a structural change in transducin beta gamma.
    Loew A; Ho YK; Blundell T; Bax B
    Structure; 1998 Aug; 6(8):1007-19. PubMed ID: 9739091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A small region in phosducin inhibits G-protein betagamma-subunit function.
    Blüml K; Schnepp W; Schröder S; Beyermann M; Macias M; Oschkinat H; Lohse MJ
    EMBO J; 1997 Aug; 16(16):4908-15. PubMed ID: 9305633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Basis for the 14-3-3 Protein-Dependent Inhibition of Phosducin Function.
    Kacirova M; Novacek J; Man P; Obsilova V; Obsil T
    Biophys J; 2017 Apr; 112(7):1339-1349. PubMed ID: 28402877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional roles of the two domains of phosducin and phosducin-like protein.
    Savage JR; McLaughlin JN; Skiba NP; Hamm HE; Willardson BM
    J Biol Chem; 2000 Sep; 275(39):30399-407. PubMed ID: 10896945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosducin regulates the expression of transducin betagamma subunits in rod photoreceptors and does not contribute to phototransduction adaptation.
    Krispel CM; Sokolov M; Chen YM; Song H; Herrmann R; Arshavsky VY; Burns ME
    J Gen Physiol; 2007 Sep; 130(3):303-12. PubMed ID: 17724163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physiological roles of phosducin: from retinal function to stress-dependent hypertension.
    Beetz N; Hein L
    Cell Mol Life Sci; 2011 Feb; 68(4):599-612. PubMed ID: 21069424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosducin and betagamma-transducin interaction I: effects of post-translational modifications.
    Chen F; Lee RH
    Biochem Biophys Res Commun; 1997 Apr; 233(2):370-4. PubMed ID: 9144541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitylation of the transducin betagamma subunit complex. Regulation by phosducin.
    Obin M; Lee BY; Meinke G; Bohm A; Lee RH; Gaudet R; Hopp JA; Arshavsky VY; Willardson BM; Taylor A
    J Biol Chem; 2002 Nov; 277(46):44566-75. PubMed ID: 12215439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of phosducin accelerates rod recovery from transducin translocation.
    Belcastro M; Song H; Sinha S; Song C; Mathers PH; Sokolov M
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):3084-91. PubMed ID: 22491418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cone photoreceptor betagamma-transducin: posttranslational modification and interaction with phosducin.
    Chen F; Ng PS; Faull KF; Lee RH
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4622-9. PubMed ID: 14578377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of G-protein betagamma-subunit functions by phosducin-like protein.
    Schröder S; Lohse MJ
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):2100-4. PubMed ID: 8700891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of electrostatic interactions in the regulation of the membrane association of G protein beta gamma heterodimers.
    Murray D; McLaughlin S; Honig B
    J Biol Chem; 2001 Nov; 276(48):45153-9. PubMed ID: 11557749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the molecular interaction of the farnesyl moiety of transducin through the use of a photoreactive farnesyl analogue.
    Hagiwara K; Wada A; Katadae M; Ito M; Ohya Y; Casey PJ; Fukada Y
    Biochemistry; 2004 Jan; 43(2):300-9. PubMed ID: 14717583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural Characterization of Phosducin and Its Complex with the 14-3-3 Protein.
    Kacirova M; Kosek D; Kadek A; Man P; Vecer J; Herman P; Obsilova V; Obsil T
    J Biol Chem; 2015 Jun; 290(26):16246-60. PubMed ID: 25971962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural modulation of phosducin by phosphorylation and 14-3-3 protein binding.
    Rezabkova L; Kacirova M; Sulc M; Herman P; Vecer J; Stepanek M; Obsilova V; Obsil T
    Biophys J; 2012 Nov; 103(9):1960-9. PubMed ID: 23199924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic AMP has no effect on the generation, recovery, or background adaptation of light responses in functionally intact rod outer segments: with implications about the function of phosducin.
    Jindrova H; Detwiler PB
    Vis Neurosci; 2000; 17(6):887-92. PubMed ID: 11193104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compartment-specific phosphorylation of phosducin in rods underlies adaptation to various levels of illumination.
    Song H; Belcastro M; Young EJ; Sokolov M
    J Biol Chem; 2007 Aug; 282(32):23613-21. PubMed ID: 17569665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of the kinetics of phosducin phosphorylation in retinal rods.
    Wilkins JF; Bitensky MW; Willardson BM
    J Biol Chem; 1996 Aug; 271(32):19232-7. PubMed ID: 8702603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A molecular mechanism for the phosphorylation-dependent regulation of heterotrimeric G proteins by phosducin.
    Gaudet R; Savage JR; McLaughlin JN; Willardson BM; Sigler PB
    Mol Cell; 1999 May; 3(5):649-60. PubMed ID: 10360181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.