These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8898220)

  • 1. Early gene expression along the animal-vegetal axis in sea urchin embryoids and grafted embryos.
    Ghiglione C; Emily-Fenouil F; Chang P; Gache C
    Development; 1996 Oct; 122(10):3067-74. PubMed ID: 8898220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSK3beta/shaggy mediates patterning along the animal-vegetal axis of the sea urchin embryo.
    Emily-Fenouil F; Ghiglione C; Lhomond G; Lepage T; Gache C
    Development; 1998 Jul; 125(13):2489-98. PubMed ID: 9609832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of disheveled in a novel vegetal cortical domain in sea urchin eggs and embryos: implications for the localized activation of canonical Wnt signaling.
    Peng CJ; Wikramanayake AH
    PLoS One; 2013; 8(11):e80693. PubMed ID: 24236196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. beta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
    Wikramanayake AH; Huang L; Klein WH
    Proc Natl Acad Sci U S A; 1998 Aug; 95(16):9343-8. PubMed ID: 9689082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple signaling events specify ectoderm and pattern the oral-aboral axis in the sea urchin embryo.
    Wikramanayake AH; Klein WH
    Development; 1997 Jan; 124(1):13-20. PubMed ID: 9006063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal expression pattern during sea urchin embryogenesis of a gene coding for a protease homologous to the human protein BMP-1 and to the product of the Drosophila dorsal-ventral patterning gene tolloid.
    Lepage T; Ghiglione C; Gache C
    Development; 1992 Jan; 114(1):147-63. PubMed ID: 1339338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Range and stability of cell fate determination in isolated sea urchin blastomeres.
    Livingston BT; Wilt FH
    Development; 1990 Mar; 108(3):403-10. PubMed ID: 2160367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A complete second gut induced by transplanted micromeres in the sea urchin embryo.
    Ransick A; Davidson EH
    Science; 1993 Feb; 259(5098):1134-8. PubMed ID: 8438164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin early development.
    Ghiglione C; Lhomond G; Lepage T; Gache C
    EMBO J; 1993 Jan; 12(1):87-96. PubMed ID: 7679074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TCF is the nuclear effector of the beta-catenin signal that patterns the sea urchin animal-vegetal axis.
    Vonica A; Weng W; Gumbiner BM; Venuti JM
    Dev Biol; 2000 Jan; 217(2):230-43. PubMed ID: 10625549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maternal control of early patterning in sea urchin embryos.
    Kipryushina YO; Yakovlev KV
    Differentiation; 2020; 113():28-37. PubMed ID: 32371341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subequatorial cytoplasm plays an important role in ectoderm patterning in the sea urchin embryo.
    Kominami T; Akagawa M; Takata H
    Dev Growth Differ; 2006 Feb; 48(2):101-15. PubMed ID: 16512854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
    Logan CY; Miller JR; Ferkowicz MJ; McClay DR
    Development; 1999 Jan; 126(2):345-57. PubMed ID: 9847248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early mRNAs, spatially restricted along the animal-vegetal axis of sea urchin embryos, include one encoding a protein related to tolloid and BMP-1.
    Reynolds SD; Angerer LM; Palis J; Nasir A; Angerer RC
    Development; 1992 Mar; 114(3):769-86. PubMed ID: 1618141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpSoxB1, a maternally encoded transcription factor asymmetrically distributed among early sea urchin blastomeres.
    Kenny AP; Kozlowski D; Oleksyn DW; Angerer LM; Angerer RC
    Development; 1999 Dec; 126(23):5473-83. PubMed ID: 10556071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. VEB4: Early zygotic mRNA expressed asymmetrically along the animal-vegetal axis of the sea urchin embryo.
    Nasir A; Reynolds SD; Angerer LM; Angerer RC
    Dev Growth Differ; 1995 Feb; 37(1):57-68. PubMed ID: 37282207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination and morphogenesis in the sea urchin embryo.
    Wilt FH
    Development; 1987 Aug; 100(4):559-76. PubMed ID: 3443047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple positive cis elements regulate the asymmetric expression of the SpHE gene along the sea urchin embryo animal-vegetal axis.
    Wei Z; Angerer LM; Angerer RC
    Dev Biol; 1997 Jul; 187(1):71-8. PubMed ID: 9224675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.