These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8898220)

  • 21. Expression of S9 and actin CyIIa mRNAs reveals dorso-ventral polarity and mesodermal sublineages in the vegetal plate of the sea urchin embryo.
    Miller RN; Dalamagas DG; Kingsley PD; Ettensohn CA
    Mech Dev; 1996 Nov; 60(1):3-12. PubMed ID: 9025057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial expression of the hatching enzyme gene in the sea urchin embryo.
    Lepage T; Sardet C; Gache C
    Dev Biol; 1992 Mar; 150(1):23-32. PubMed ID: 1537434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ca²⁺ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral-aboral axis formation in early sea urchin embryos.
    Yazaki I; Tsurugaya T; Santella L; Chun JT; Amore G; Kusunoki S; Asada A; Togo T; Akasaka K
    Zygote; 2015 Jun; 23(3):426-46. PubMed ID: 24717667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A micromere induction signal is activated by beta-catenin and acts through notch to initiate specification of secondary mesenchyme cells in the sea urchin embryo.
    McClay DR; Peterson RE; Range RC; Winter-Vann AM; Ferkowicz MJ
    Development; 2000 Dec; 127(23):5113-22. PubMed ID: 11060237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos.
    Livingston BT; Wilt FH
    Proc Natl Acad Sci U S A; 1989 May; 86(10):3669-73. PubMed ID: 2726745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bep4 protein is involved in patterning along the animal-vegetal axis in the Paracentrotus lividus embryo.
    Romancino DP; Montana G; Dalmazio S; Di Carlo M
    Dev Biol; 2001 Jun; 234(1):107-19. PubMed ID: 11356023
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Specification process of animal plate in the sea urchin embryo.
    Sasaki H; Kominami T
    Dev Growth Differ; 2008 Sep; 50(7):595-606. PubMed ID: 19238730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detecting expression patterns of Wnt pathway components in sea urchin embryos.
    Bince JM; Peng CF; Wikramanayake AH
    Methods Mol Biol; 2008; 469():201-11. PubMed ID: 19109712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Commitment along the dorsoventral axis of the sea urchin embryo is altered in response to NiCl2.
    Hardin J; Coffman JA; Black SD; McClay DR
    Development; 1992 Nov; 116(3):671-85. PubMed ID: 1289059
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ca(2+) in specification of vegetal cell fate in early sea urchin embryos.
    Yazaki I
    J Exp Biol; 2001 Mar; 204(Pt 5):823-34. PubMed ID: 11171406
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatially restricted expression of PlOtp, a Paracentrotus lividus orthopedia-related homeobox gene, is correlated with oral ectodermal patterning and skeletal morphogenesis in late-cleavage sea urchin embryos.
    Di Bernardo M; Castagnetti S; Bellomonte D; Oliveri P; Melfi R; Palla F; Spinelli G
    Development; 1999 May; 126(10):2171-9. PubMed ID: 10207142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autonomous and non-autonomous differentiation of ectoderm in different sea urchin species.
    Wikramanayake AH; Brandhorst BP; Klein WH
    Development; 1995 May; 121(5):1497-505. PubMed ID: 7789279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A regulatory gene network that directs micromere specification in the sea urchin embryo.
    Oliveri P; Carrick DM; Davidson EH
    Dev Biol; 2002 Jun; 246(1):209-28. PubMed ID: 12027443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and localization of a sea urchin Notch homologue: insights into vegetal plate regionalization and Notch receptor regulation.
    Sherwood DR; McClay DR
    Development; 1997 Sep; 124(17):3363-74. PubMed ID: 9310331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula.
    Ruffins SW; Ettensohn CA
    Development; 1996 Jan; 122(1):253-63. PubMed ID: 8565837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
    Ransick A; Rast JP; Minokawa T; Calestani C; Davidson EH
    Dev Biol; 2002 Jun; 246(1):132-47. PubMed ID: 12027439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos.
    Kenny AP; Oleksyn DW; Newman LA; Angerer RC; Angerer LM
    Dev Biol; 2003 Sep; 261(2):412-25. PubMed ID: 14499650
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus.
    Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN
    Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos.
    Range RC
    Dev Biol; 2018 Dec; 444(2):83-92. PubMed ID: 30332609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.