These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 889849)
1. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. I. Interaction of enzymes with the monomers and micelles of soluble, amphiphilic lipids. Gatt S; Bartfai T Biochim Biophys Acta; 1977 Jul; 488(1):1-12. PubMed ID: 889849 [TBL] [Abstract][Full Text] [Related]
2. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. II. Effect of adsorption of the substrate or enzyme on the steady-state kinetics. Gatt S; Bartfai T Biochim Biophys Acta; 1977 Jul; 488(1):13-24. PubMed ID: 889854 [TBL] [Abstract][Full Text] [Related]
3. Description of enzyme kinetics in reversed micelles. 1. Theory. Verhaert RM; Hilhorst R; Vermuë M; Schaafsma TJ; Veeger C Eur J Biochem; 1990 Jan; 187(1):59-72. PubMed ID: 2298210 [TBL] [Abstract][Full Text] [Related]
4. Kinetic theory of enzymatic reactions in reversed micellar systems. Application of the pseudophase approach for partitioning substrates. Khmelnitsky YL; Neverova IN; Polyakov VI; Grinberg VYa ; Levashov AV; Martinek K Eur J Biochem; 1990 May; 190(1):155-9. PubMed ID: 2364944 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of steady-state kinetic parameters for enzymes solubilized in water-in-oil microemulsion systems. Oldfield C Biochem J; 1990 Nov; 272(1):15-22. PubMed ID: 2264819 [TBL] [Abstract][Full Text] [Related]
6. The principles of enzyme stabilization. VI. Catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents. Martinek K; Levashov AV; Klyachko NL; Pantin VI; Berezin IV Biochim Biophys Acta; 1981 Jan; 657(1):277-94. PubMed ID: 7213747 [TBL] [Abstract][Full Text] [Related]
7. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate. ter Kuile BH; Cook M Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344 [TBL] [Abstract][Full Text] [Related]
8. The computation of hyperbolic dependences in enzyme kinetics. Airas RK Biochem J; 1976 May; 155(2):449-52. PubMed ID: 938492 [TBL] [Abstract][Full Text] [Related]
9. Analytical solution of coupled nonlinear rate equations. I. Michaelis-Menten kinetics. Phillipson PE Biophys Chem; 1982 Oct; 16(2):173-9. PubMed ID: 7139051 [TBL] [Abstract][Full Text] [Related]
10. Theoretical analysis of the significance of whether or not enzymes or transport systems in structured media follow Michaelis-Menten kinetics. Vincent JC; Thellier M Biophys J; 1983 Jan; 41(1):23-8. PubMed ID: 6824750 [TBL] [Abstract][Full Text] [Related]
11. Rates of reactions catalysed by a dimeric enzyme. Effects of the reaction scheme and the kinetic parameters on co-operativity. Ishikawa H; Ogino H; Oshida H Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):131-7. PubMed ID: 1741741 [TBL] [Abstract][Full Text] [Related]
12. Proceedings: Rate equations and simulation curves for enzymatic reactions utilizing lipids as substrates. Gatt S; Bartfai T Isr J Med Sci; 1975 Nov; 11(11):1172. PubMed ID: 1205736 [No Abstract] [Full Text] [Related]
14. A kinetic description of sequential, reversible, Michaelis-Menten reactions: practical application of theory to metabolic pathways. Brooks SP; Storey KB Mol Cell Biochem; 1992 Sep; 115(1):43-8. PubMed ID: 1435764 [TBL] [Abstract][Full Text] [Related]
15. Michaelis-Menten equation for degradation of insoluble substrate. Andersen M; Kari J; Borch K; Westh P Math Biosci; 2018 Feb; 296():93-97. PubMed ID: 29197509 [TBL] [Abstract][Full Text] [Related]
16. The effect of substrate partitioning on the kinetics of enzymes acting in reverse micelles. Bru R; Sánchez-Ferrer A; García-Carmona F Biochem J; 1990 Jun; 268(3):679-84. PubMed ID: 2114098 [TBL] [Abstract][Full Text] [Related]
17. The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Hofmeyr JH; Cornish-Bowden A Comput Appl Biosci; 1997 Aug; 13(4):377-85. PubMed ID: 9283752 [TBL] [Abstract][Full Text] [Related]
18. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations. Goličnik M Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903 [TBL] [Abstract][Full Text] [Related]
19. An analysis of the kinetics of enzymatic systems with unstable species. Garrido-del Solo C; Havsteen BH; Varon R Biosystems; 1996; 38(1):75-86. PubMed ID: 8833750 [TBL] [Abstract][Full Text] [Related]
20. On enzymic clotting processes V. rate equations for the case of arbitrary rate of production of the clotting species. Payens TA; Wiersma AK Biophys Chem; 1980 Apr; 11(2):137-46. PubMed ID: 6768405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]