These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
348 related articles for article (PubMed ID: 889854)
1. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. II. Effect of adsorption of the substrate or enzyme on the steady-state kinetics. Gatt S; Bartfai T Biochim Biophys Acta; 1977 Jul; 488(1):13-24. PubMed ID: 889854 [TBL] [Abstract][Full Text] [Related]
2. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. I. Interaction of enzymes with the monomers and micelles of soluble, amphiphilic lipids. Gatt S; Bartfai T Biochim Biophys Acta; 1977 Jul; 488(1):1-12. PubMed ID: 889849 [TBL] [Abstract][Full Text] [Related]
3. Description of enzyme kinetics in reversed micelles. 1. Theory. Verhaert RM; Hilhorst R; Vermuë M; Schaafsma TJ; Veeger C Eur J Biochem; 1990 Jan; 187(1):59-72. PubMed ID: 2298210 [TBL] [Abstract][Full Text] [Related]
4. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact. Fischer E; Keleti T Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106 [TBL] [Abstract][Full Text] [Related]
5. Rates of reactions catalysed by a dimeric enzyme. Effects of the reaction scheme and the kinetic parameters on co-operativity. Ishikawa H; Ogino H; Oshida H Biochem J; 1991 Nov; 280 ( Pt 1)(Pt 1):131-7. PubMed ID: 1741741 [TBL] [Abstract][Full Text] [Related]
6. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase. Bardsley WG; Leff P; Kavanagh J; Waight RD Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of steady-state kinetic parameters for enzymes solubilized in water-in-oil microemulsion systems. Oldfield C Biochem J; 1990 Nov; 272(1):15-22. PubMed ID: 2264819 [TBL] [Abstract][Full Text] [Related]
8. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate. ter Kuile BH; Cook M Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344 [TBL] [Abstract][Full Text] [Related]
9. The computation of hyperbolic dependences in enzyme kinetics. Airas RK Biochem J; 1976 May; 155(2):449-52. PubMed ID: 938492 [TBL] [Abstract][Full Text] [Related]
10. A kinetic description of sequential, reversible, Michaelis-Menten reactions: practical application of theory to metabolic pathways. Brooks SP; Storey KB Mol Cell Biochem; 1992 Sep; 115(1):43-8. PubMed ID: 1435764 [TBL] [Abstract][Full Text] [Related]
11. Michaelis-Menten equation for degradation of insoluble substrate. Andersen M; Kari J; Borch K; Westh P Math Biosci; 2018 Feb; 296():93-97. PubMed ID: 29197509 [TBL] [Abstract][Full Text] [Related]
12. Surface enzyme kinetics for biopolymer microarrays: a combination of Langmuir and Michaelis-Menten concepts. Lee HJ; Wark AW; Goodrich TT; Fang S; Corn RM Langmuir; 2005 Apr; 21(9):4050-7. PubMed ID: 15835973 [TBL] [Abstract][Full Text] [Related]
13. Proceedings: Rate equations and simulation curves for enzymatic reactions utilizing lipids as substrates. Gatt S; Bartfai T Isr J Med Sci; 1975 Nov; 11(11):1172. PubMed ID: 1205736 [No Abstract] [Full Text] [Related]
14. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible competitive inhibitor, tested by simulated progress curves. Moruno-Dávila MA; Garrido-del Solo C; García-Moreno M; Havsteen BH; Garcia-Sevilla F; Garcia-Cánovas F; Varón R Int J Biochem Cell Biol; 2001 Feb; 33(2):181-91. PubMed ID: 11240375 [TBL] [Abstract][Full Text] [Related]
15. An analysis of the kinetics of enzymatic systems with unstable species. Garrido-del Solo C; Havsteen BH; Varon R Biosystems; 1996; 38(1):75-86. PubMed ID: 8833750 [TBL] [Abstract][Full Text] [Related]
16. Analytical solution of coupled nonlinear rate equations. I. Michaelis-Menten kinetics. Phillipson PE Biophys Chem; 1982 Oct; 16(2):173-9. PubMed ID: 7139051 [TBL] [Abstract][Full Text] [Related]
17. The transient-state kinetics of two-substrate enzyme systems operating by an ordered ternary-complex mechanism. Pettersson G Eur J Biochem; 1976 Oct; 69(1):273-8. PubMed ID: 991859 [TBL] [Abstract][Full Text] [Related]
18. The reversible Hill equation: how to incorporate cooperative enzymes into metabolic models. Hofmeyr JH; Cornish-Bowden A Comput Appl Biosci; 1997 Aug; 13(4):377-85. PubMed ID: 9283752 [TBL] [Abstract][Full Text] [Related]
19. Theoretical analysis of the significance of whether or not enzymes or transport systems in structured media follow Michaelis-Menten kinetics. Vincent JC; Thellier M Biophys J; 1983 Jan; 41(1):23-8. PubMed ID: 6824750 [TBL] [Abstract][Full Text] [Related]
20. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]