BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 8898710)

  • 1. Lactate accumulation during moderate hypoxic hypoxia in neocortical rat brain.
    Payen JF; LeBars E; Wuyam B; Tropini B; Pépin JL; Lévy P; Décorps M
    J Cereb Blood Flow Metab; 1996 Nov; 16(6):1345-52. PubMed ID: 8898710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolite changes in neonatal rat brain during and after cerebral hypoxia-ischemia: a magnetic resonance spectroscopic imaging study.
    Malisza KL; Kozlowski P; Ning G; Bascaramurty S; Tuor UI
    NMR Biomed; 1999 Feb; 12(1):31-8. PubMed ID: 10195327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral metabolism in experimental hydrocephalus: an in vivo 1H and 31P magnetic resonance spectroscopy study.
    Braun KP; van Eijsden P; Vandertop WP; de Graaf RA; Gooskens RH; Tulleken KA; Nicolay K
    J Neurosurg; 1999 Oct; 91(4):660-8. PubMed ID: 10507389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between lactate and neuronal cell damage in the rat brain after focal ischemia: An in vivo 1H magnetic resonance spectroscopic (1H-MRS) study.
    Woo CW; Lee BS; Kim ST; Kim KS
    Acta Radiol; 2010 Apr; 51(3):344-50. PubMed ID: 20144147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypothermia reduces cytotoxic edema and metabolic alterations during the acute phase of massive SAH: a diffusion-weighted imaging and spectroscopy study in rats.
    Schubert GA; Poli S; Schilling L; Heiland S; Thomé C
    J Neurotrauma; 2008 Jul; 25(7):841-52. PubMed ID: 18627260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral energy metabolism during hypoxaemia. A 31P and 1H magnetic resonance study.
    Garde K; Rostrup E; Toft PB; Henriksen O
    Acta Physiol Scand; 1995 Jun; 154(2):185-91. PubMed ID: 7572214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hypoxia on cerebral metabolites measured by proton nuclear magnetic resonance spectroscopy in rats.
    Rosenberg GA; White J; Gasparovic C; Crisostomo EA; Griffey RH
    Stroke; 1991 Jan; 22(1):73-9. PubMed ID: 1846248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton magnetic resonance spectroscopic findings of cerebral fat embolism induced by triolein emulsion in cats.
    Baik SK; Kim YW; Kim HJ; Lee JW; Cho BM; Kim DH; Choi SH; Lee SH; Chang KH
    Acta Radiol; 2008 Dec; 49(10):1174-81. PubMed ID: 19031181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of blood glucose concentration on brain lactate accumulation during severe hypoxia and subsequent recovery of brain energy metabolism.
    Gardiner M; Smith ML; Kågström E; Shohami E; Siesjö BK
    J Cereb Blood Flow Metab; 1982 Dec; 2(4):429-38. PubMed ID: 7142307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular N-acetyl-aspartate as a biochemical marker of the severity of neuronal damage following experimental acute traumatic brain injury.
    Al-Samsam RH; Alessandri B; Bullock R
    J Neurotrauma; 2000 Jan; 17(1):31-9. PubMed ID: 10674756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of 2-deoxy-d-glucose on focal cerebral ischemia in hyperglycemic rats.
    Wei J; Cohen DM; Quast MJ
    J Cereb Blood Flow Metab; 2003 May; 23(5):556-64. PubMed ID: 12771570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative T1rho NMR spectroscopy of rat cerebral metabolites in vivo: effects of global ischemia.
    Kettunen MI; Gröhn OH; Kauppinen RA
    Magn Reson Med; 2004 May; 51(5):875-80. PubMed ID: 15122667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain metabolism and extracellular space diffusion parameters during and after transient global hypoxia in the rat cortex.
    Zoremba N; Homola A; Rossaint R; Syková E
    Exp Neurol; 2007 Jan; 203(1):34-41. PubMed ID: 16956608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased cerebral lactate during hypoxia may be neuroprotective in newborn piglets with intrauterine growth restriction.
    Moxon-Lester L; Sinclair K; Burke C; Cowin GJ; Rose SE; Colditz P
    Brain Res; 2007 Nov; 1179():79-88. PubMed ID: 17936737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between arterial po2 and cerebral blood flow in hypoxic hypoxia.
    Borgström L; Jóhannsson H; Siesjö BK
    Acta Physiol Scand; 1975 Mar; 93(3):423-32. PubMed ID: 1146584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels.
    Widmer H; Abiko H; Faden AI; James TL; Weinstein PR
    J Cereb Blood Flow Metab; 1992 May; 12(3):456-68. PubMed ID: 1569139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elevated brain lactate responses to neural activation in panic disorder: a dynamic 1H-MRS study.
    Maddock RJ; Buonocore MH; Copeland LE; Richards AL
    Mol Psychiatry; 2009 May; 14(5):537-45. PubMed ID: 18180759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxic-ischemic injuries: the role of magnetic resonance spectroscopy.
    Brandão LA; Caires C
    Neuroimaging Clin N Am; 2013 Aug; 23(3):449-57. PubMed ID: 23928199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes during ischaemia.
    Crockard HA; Gadian DG; Frackowiak RS; Proctor E; Allen K; Williams SR; Russell RW
    J Cereb Blood Flow Metab; 1987 Aug; 7(4):394-402. PubMed ID: 3611203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral glucose and energy utilization during the evolution of hypoxic-ischemic brain damage in the immature rat.
    Vannucci RC; Yager JY; Vannucci SJ
    J Cereb Blood Flow Metab; 1994 Mar; 14(2):279-88. PubMed ID: 8113323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.