These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8898903)

  • 1. The mechanism of proline/glutamate antiport in rat kidney mitochondria. Energy dependence and glutamate-carrier involvement.
    Atlante A; Passarella S; Pierro P; Di Martino C; Quagliariello E
    Eur J Biochem; 1996 Oct; 241(1):171-7. PubMed ID: 8898903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ornithine/phosphate antiport in rat kidney mitochondria. Some characteristics of the process.
    Passarella S; Atlante A; Quagliariello E
    Eur J Biochem; 1990 Oct; 193(1):221-7. PubMed ID: 2226441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proline transport in rat kidney mitochondria.
    Atlante A; Passarella S; Pierro P; Quagliariello E
    Arch Biochem Biophys; 1994 Feb; 309(1):139-48. PubMed ID: 7906935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial transport in proline catabolism in plants: the existence of two separate translocators in mitochondria isolated from durum wheat seedlings.
    Di Martino C; Pizzuto R; Pallotta ML; De Santis A; Passarella S
    Planta; 2006 May; 223(6):1123-33. PubMed ID: 16322984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The sodium-calcium antiport of heart mitochondria is not electroneutral.
    Jung DW; Baysal K; Brierley GP
    J Biol Chem; 1995 Jan; 270(2):672-8. PubMed ID: 7822294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of mitochondrial coenzyme A uptake on the membrane electrical gradient.
    Tahiliani AG
    J Biol Chem; 1989 Nov; 264(31):18426-32. PubMed ID: 2553708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamine transport in normal and acidotic rat kidney mitochondria.
    Atlante A; Passarella S; Minervini GM; Quagliariello E
    Arch Biochem Biophys; 1994 Dec; 315(2):369-81. PubMed ID: 7986080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani.
    Zilberstein D; Dwyer DM
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1716-20. PubMed ID: 2984665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction mechanism of the reconstituted aspartate/glutamate carrier from bovine heart mitochondria.
    Dierks T; Riemer E; Krämer R
    Biochim Biophys Acta; 1988 Aug; 943(2):231-44. PubMed ID: 2900025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of phosphate and ionophores on (14C)-NEM incorporation in mitochondrial membranes and relationships with phosphate carrier system.
    Briand Y; Debise R; Durand R
    Biochimie; 1975; 57(6-7):787-96. PubMed ID: 1203324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Mar; 16(5):854-9. PubMed ID: 14665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation.
    Indiveri C; Tonazzi A; Stipani I; Palmieri F
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):349-55. PubMed ID: 9359400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking of proton flow during transition from anaerobiosis to steady state in rat liver mitochondria.
    Luvisetto S; Cola C; Conover TE; Azzone GF
    Biochim Biophys Acta; 1990 Jul; 1018(1):77-90. PubMed ID: 2165420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on calcium transport during growth and sporulation.
    Seto-Young DL; Ellar DJ
    Microbios; 1981; 30(121-122):191-208. PubMed ID: 6796806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proline transport in Leishmania donovani amastigotes: dependence on pH gradients and membrane potential.
    Glaser TA; Mukkada AJ
    Mol Biochem Parasitol; 1992 Mar; 51(1):1-8. PubMed ID: 1533014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of salts and ionophores on proline transport in a moderately halopholic halotolerant bacterium.
    Peleg E; Tietz A; Friedberg I
    Biochim Biophys Acta; 1980 Feb; 596(1):118-28. PubMed ID: 6766316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Na(+)-independent Ca2+ efflux system in mitochondria is a Ca2+/2H+ exchange system.
    Rottenberg H; Marbach M
    FEBS Lett; 1990 Nov; 274(1-2):65-8. PubMed ID: 2253785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrogenic and nonelectrogenic ion fluxes across lipid and mitochondrial membranes mediated by monensin and monensin ethyl ester.
    Antonenko YN; Rokitskaya TI; Huczyński A
    Biochim Biophys Acta; 2015 Apr; 1848(4):995-1004. PubMed ID: 25600660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport mechanism of glutamate by hypotonic-treated glial plasmalemmal vesicles from rat hippocampus. Effects of concentration gradients of Na+ and K+ and of ionophores.
    Nakamura Y; Kataoka K
    J Mol Neurosci; 1993; 4(4):255-62. PubMed ID: 7917834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic study of the aspartate/glutamate carrier in intact rat heart mitochondria and comparison with a reconstituted system.
    Sluse FE; Evens A; Dierks T; Duyckaerts C; Sluse-Goffart CM; Krämer R
    Biochim Biophys Acta; 1991 Jul; 1058(3):329-38. PubMed ID: 2065061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.