These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
54 related articles for article (PubMed ID: 889913)
1. [Relationship between ionic membrane currents and stationary rates of stable and unstable spike propagation]. Khramov RN; Krinskiĭ VI Biofizika; 1977; 22(3):512-7. PubMed ID: 889913 [TBL] [Abstract][Full Text] [Related]
2. [Rate of excitation propagation in a reduced Hodgkins-Huxley model. II. Slow relaxation of the sodium current]. Pastushenko VF; Chizmadzhev IuA; Markin VS Biofizika; 1975; 20(5):880-6. PubMed ID: 1203276 [TBL] [Abstract][Full Text] [Related]
3. [Rate of excitation propagation in a reduced Hodgkins-Huxley model. III. Integrodifferential equations]. Pastushenko VF; Chizmadzhev IuA; Markin VS Biofizika; 1975; 20(6):1078-82. PubMed ID: 1203296 [TBL] [Abstract][Full Text] [Related]
4. How membrane properties shape the discharge of motoneurons: a detailed analytical study. Meunier C; Borejsza K Neural Comput; 2005 Nov; 17(11):2383-420. PubMed ID: 16156933 [TBL] [Abstract][Full Text] [Related]
5. Effects of delay on the type and velocity of travelling pulses in neuronal networks with spatially decaying connectivity. Golomb D; Ermentrou GB Network; 2000 Aug; 11(3):221-46. PubMed ID: 11014670 [TBL] [Abstract][Full Text] [Related]
6. [Analysis of the equations of excitable membranes. II. Method of analysis of the electrophysiological characteristics of a Hodgkin-Huxley membrane from graphs of a 2d-order null-isocline system]. Kokoz IuM; Krinskiĭ VI Biofizika; 1973; 18(5):878-85. PubMed ID: 4751866 [No Abstract] [Full Text] [Related]
7. [Rate of excitation propagation in a reduced Hodgkins-Huxley model. I. Rapid relaxation of the sodium current]. Pastushenko VF; Chizmadzhev IvA ; Markin VS Biofizika; 1975; 20(4):675-81. PubMed ID: 1201303 [TBL] [Abstract][Full Text] [Related]
9. Functional analysis of whole cell currents from hair cells of the turtle posterior crista. Goldberg JM; Brichta AM J Neurophysiol; 2002 Dec; 88(6):3279-92. PubMed ID: 12466446 [TBL] [Abstract][Full Text] [Related]
10. Spike trains in a stochastic Hodgkin-Huxley system. Henry C T Biosystems; 2005 Apr; 80(1):25-36. PubMed ID: 15740832 [TBL] [Abstract][Full Text] [Related]
11. Neural rate equations for bursting dynamics derived from conductance-based equations. Robinson PA; Wu H; Kim JW J Theor Biol; 2008 Feb; 250(4):663-72. PubMed ID: 18068732 [TBL] [Abstract][Full Text] [Related]
12. [Propagation of the action potential in the vicinity of the soma of giant neurons after the Hodgkin--Huxley model]. Zamekhovskiĭ IZ; Degtiarenko AN Neirofiziologiia; 1975; 7(4):422-7. PubMed ID: 1207823 [TBL] [Abstract][Full Text] [Related]
13. The singularly perturbed Hodgkin-Huxley equations as a tool for the analysis of repetitive nerve activity. Awiszus F; Dehnhardt J; Funke T J Math Biol; 1990; 28(2):177-95. PubMed ID: 2319211 [TBL] [Abstract][Full Text] [Related]
14. The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. Rubin J; Wechselberger M Chaos; 2008 Mar; 18(1):015105. PubMed ID: 18377086 [TBL] [Abstract][Full Text] [Related]
15. Computer simulation for studying calcium dependent abnormalities in firing mechanism of molluscan neurones. Pongrácz F; Szente M Acta Physiol Acad Sci Hung; 1982; 60(4):189-203. PubMed ID: 6314740 [TBL] [Abstract][Full Text] [Related]
16. Bifurcation, chaos and suppression of chaos in FitzHugh-Nagumo nerve conduction model equation. Rajasekar S; Lakshmanan M J Theor Biol; 1994 Feb; 166(3):275-88. PubMed ID: 8159015 [TBL] [Abstract][Full Text] [Related]
17. Voltage-dependent currents of vertebrate neurons and their role in membrane excitability. Adams PR; Galvan M Adv Neurol; 1986; 44():137-70. PubMed ID: 2422889 [TBL] [Abstract][Full Text] [Related]
18. A universal model for spike-frequency adaptation. Benda J; Herz AV Neural Comput; 2003 Nov; 15(11):2523-64. PubMed ID: 14577853 [TBL] [Abstract][Full Text] [Related]
19. Ionic currents of the nodal membrane underlying the fastest saltatory conduction in myelinated giant nerve fibers of the shrimp Penaeus japonicus. Terakawa S; Hsu K J Neurobiol; 1991 Jun; 22(4):342-52. PubMed ID: 1716299 [TBL] [Abstract][Full Text] [Related]
20. Mathematical model of pacemaker activity in bursting neurons of snail, Helix pomatia. Berezetskaya NM; Kharkyanen VN; Kononenko NI J Theor Biol; 1996 Nov; 183(2):207-18. PubMed ID: 8977878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]