BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 8899569)

  • 1. Reconstruction of the glial environment of a photochemically induced lesion in the rat spinal cord by transplantation of mixed glial cells.
    Olby NJ; Blakemore WF
    J Neurocytol; 1996 Aug; 25(8):481-98. PubMed ID: 8899569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary demyelination and regeneration of ascending axons in the dorsal funiculus of the rat spinal cord following photochemically induced injury.
    Olby NJ; Blakemore WF
    J Neurocytol; 1996 Aug; 25(8):465-80. PubMed ID: 8899568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of glial transplantation on functional recovery following acute spinal cord injury.
    Lee KH; Yoon DH; Park YG; Lee BH
    J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice.
    Ribotta MG; Menet V; Privat A
    Acta Neurochir Suppl; 2004; 89():87-92. PubMed ID: 15335106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of transplanted glial cells to reconstruct glial environments in the CNS.
    Blakemore WF; Olby NJ; Franklin RJ
    Brain Pathol; 1995 Oct; 5(4):443-50. PubMed ID: 8974627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration.
    Zhang Z; Guth L
    Exp Neurol; 1997 Sep; 147(1):159-71. PubMed ID: 9294413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy.
    Bunge MB; Holets VR; Bates ML; Clarke TS; Watson BD
    Exp Neurol; 1994 May; 127(1):76-93. PubMed ID: 8200439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord.
    Houlé JD; Reier PJ
    J Comp Neurol; 1988 Mar; 269(4):535-47. PubMed ID: 2453536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of human glial restricted progenitors and derived astrocytes into a contusion model of spinal cord injury.
    Jin Y; Neuhuber B; Singh A; Bouyer J; Lepore A; Bonner J; Himes T; Campanelli JT; Fischer I
    J Neurotrauma; 2011 Apr; 28(4):579-94. PubMed ID: 21222572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone H1 improves regeneration after mouse spinal cord injury and changes shape and gene expression of cultured astrocytes.
    Kleene R; Loers G; Jakovcevski I; Mishra B; Schachner M
    Restor Neurol Neurosci; 2019; 37(4):291-313. PubMed ID: 31227672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tanycytes transplanted into the adult rat spinal cord support the regeneration of lesioned axons.
    Prieto M; Chauvet N; Alonso G
    Exp Neurol; 2000 Jan; 161(1):27-37. PubMed ID: 10683271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peripheral olfactory ensheathing cells reduce scar and cavity formation and promote regeneration after spinal cord injury.
    Ramer LM; Au E; Richter MW; Liu J; Tetzlaff W; Roskams AJ
    J Comp Neurol; 2004 May; 473(1):1-15. PubMed ID: 15067714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Meningeal cells and glia establish a permissive environment for axon regeneration after spinal cord injury in newts.
    Zukor KA; Kent DT; Odelberg SJ
    Neural Dev; 2011 Jan; 6():1. PubMed ID: 21205291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glial activity during axonal regrowth following cryogenic injury of rat spinal cord.
    Collins GH; West NR
    Brain Res Bull; 1989 Jan; 22(1):71-9. PubMed ID: 2713717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord.
    Plant GW; Christensen CL; Oudega M; Bunge MB
    J Neurotrauma; 2003 Jan; 20(1):1-16. PubMed ID: 12614584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiation of the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white matter.
    Franklin RJ; Bayley SA; Milner R; Ffrench-Constant C; Blakemore WF
    Glia; 1995 Jan; 13(1):39-44. PubMed ID: 7751054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration.
    Hill CE; Proschel C; Noble M; Mayer-Proschel M; Gensel JC; Beattie MS; Bresnahan JC
    Exp Neurol; 2004 Dec; 190(2):289-310. PubMed ID: 15530870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acute transplantation of olfactory ensheathing cells or Schwann cells promotes recovery after spinal cord injury in the rat.
    García-Alías G; López-Vales R; Forés J; Navarro X; Verdú E
    J Neurosci Res; 2004 Mar; 75(5):632-41. PubMed ID: 14991839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.