BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 8899603)

  • 21. Stretch-shortening cycle exercises: an effective training paradigm to enhance power output of human single muscle fibers.
    Malisoux L; Francaux M; Nielens H; Theisen D
    J Appl Physiol (1985); 2006 Mar; 100(3):771-9. PubMed ID: 16322375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of fiber type on force depression after active shortening in skeletal muscle.
    Joumaa V; Power GA; Hisey B; Caicedo A; Stutz J; Herzog W
    J Biomech; 2015 Jul; 48(10):1687-92. PubMed ID: 26091619
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle, reflex and central components in the control of the ankle joint in healthy and spastic man.
    Sinkjaer T
    Acta Neurol Scand Suppl; 1997; 170():1-28. PubMed ID: 9406617
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM.
    Rassier DE; Herzog W
    J Appl Physiol (1985); 2004 Oct; 97(4):1395-400. PubMed ID: 15194676
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How velocity impacts eccentric force generation of fully activated skinned skeletal muscle fibers in long stretches.
    Weidner S; Tomalka A; Rode C; Siebert T
    J Appl Physiol (1985); 2022 Jul; 133(1):223-233. PubMed ID: 35652830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length.
    Rassier DE; Herzog W; Wakeling J; Syme DA
    J Biomech; 2003 Sep; 36(9):1309-16. PubMed ID: 12893039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measured and modeled properties of mammalian skeletal muscle. II. The effects of stimulus frequency on force-length and force-velocity relationships.
    Brown IE; Cheng EJ; Loeb GE
    J Muscle Res Cell Motil; 1999 Oct; 20(7):627-43. PubMed ID: 10672511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleotide-dependent contractile properties of Ca(2+)-activated fast and slow skeletal muscle fibers.
    Wahr PA; Cantor HC; Metzger JM
    Biophys J; 1997 Feb; 72(2 Pt 1):822-34. PubMed ID: 9017207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in size of the stretch reflex of cat and man attributed to aftereffects in muscle spindles.
    Gregory JE; Morgan DL; Proske U
    J Neurophysiol; 1987 Sep; 58(3):628-40. PubMed ID: 2958607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Force from cat soleus muscle during imposed locomotor-like movements: experimental data versus Hill-type model predictions.
    Sandercock TG; Heckman CJ
    J Neurophysiol; 1997 Mar; 77(3):1538-52. PubMed ID: 9084618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Force encoding in muscle spindles during stretch of passive muscle.
    Blum KP; Lamotte D'Incamps B; Zytnicki D; Ting LH
    PLoS Comput Biol; 2017 Sep; 13(9):e1005767. PubMed ID: 28945740
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-uniform distribution of strain during stretch of relaxed skeletal muscle fibers from rat soleus muscle.
    Palmer ML; Claflin DR; Faulkner JA; Panchangam A
    J Muscle Res Cell Motil; 2011 Aug; 32(1):39-48. PubMed ID: 21710358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight.
    Widrick JJ; Romatowski JG; Norenberg KM; Knuth ST; Bain JL; Riley DA; Trappe SW; Trappe TA; Costill DL; Fitts RH
    J Appl Physiol (1985); 2001 Jun; 90(6):2203-11. PubMed ID: 11356784
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peak power output is maintained in rabbit psoas and rat soleus single muscle fibers when CTP replaces ATP.
    Wahr PA; Metzger JM
    J Appl Physiol (1985); 1998 Jul; 85(1):76-83. PubMed ID: 9655758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does residual force enhancement increase with increasing stretch magnitudes?
    Hisey B; Leonard TR; Herzog W
    J Biomech; 2009 Jul; 42(10):1488-1492. PubMed ID: 19442977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Velocity, force, power, and Ca2+ sensitivity of fast and slow monkey skeletal muscle fibers.
    Fitts RH; Bodine SC; Romatowski JG; Widrick JJ
    J Appl Physiol (1985); 1998 May; 84(5):1776-87. PubMed ID: 9572830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution of heterogenic reflexes among the quadriceps and triceps surae muscles of the cat hind limb.
    Wilmink RJ; Nichols TR
    J Neurophysiol; 2003 Oct; 90(4):2310-24. PubMed ID: 12826657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of blebbistatin and Ca2+ concentration on force produced during stretch of skeletal muscle fibers.
    Minozzo FC; Rassier DE
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1127-35. PubMed ID: 20720178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional consequences of bag2 and chain fiber coactivation by static gamma-axons in cat spindles.
    Emonet-Dénand F; Laporte Y; Petit J
    J Neurophysiol; 1997 Mar; 77(3):1425-31. PubMed ID: 9084608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.