BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 8899648)

  • 21. Responses of gerbil and guinea pig auditory nerve fibers to low-frequency sinusoids.
    Oshima W; Strelioff D
    Hear Res; 1983 Nov; 12(2):167-84. PubMed ID: 6643289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural mechanisms of tone-on-tone masking: patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve.
    Sinex DG; Havey DC
    J Neurophysiol; 1986 Dec; 56(6):1763-80. PubMed ID: 3806187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sound Coding in the Auditory Nerve: From Single Fiber Activity to Cochlear Mass Potentials in Gerbils.
    Huet A; Batrel C; Wang J; Desmadryl G; Nouvian R; Puel JL; Bourien J
    Neuroscience; 2019 May; 407():83-92. PubMed ID: 30342201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail.
    Joris PX; Smith PH; Yin TC
    J Neurophysiol; 1994 Mar; 71(3):1037-51. PubMed ID: 8201400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Suppression in auditory-nerve fibers of cats using low-side suppressors. II. Effect of spontaneous rates.
    Cai Y; Geisler CD
    Hear Res; 1996 Jul; 96(1-2):113-25. PubMed ID: 8817311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model.
    Carney LH; Yin TC
    J Neurophysiol; 1988 Nov; 60(5):1653-77. PubMed ID: 3199176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial response profiles of posteroventral cochlear nucleus neurons and auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Parham K; Sirianni JG; Chang SO
    J Acoust Soc Am; 1991 Jun; 89(6):2804-17. PubMed ID: 1918624
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual-space receptive fields of single auditory nerve fibers.
    Poon PW; Brugge JF
    J Neurophysiol; 1993 Aug; 70(2):667-76. PubMed ID: 8410166
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic reduction of endocochlear potential reduces auditory nerve activity: further confirmation of an animal model of metabolic presbyacusis.
    Lang H; Jyothi V; Smythe NM; Dubno JR; Schulte BA; Schmiedt RA
    J Assoc Res Otolaryngol; 2010 Sep; 11(3):419-34. PubMed ID: 20372958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise.
    Liberman MC
    J Neurophysiol; 1988 Nov; 60(5):1779-98. PubMed ID: 3199181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle.
    Winslow RL; Sachs MB
    Hear Res; 1988 Sep; 35(2-3):165-89. PubMed ID: 3198509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A population study of auditory-nerve fibers in unanesthetized decerebrate cats: response to pure tones.
    Kim DO; Chang SO; Sirianni JG
    J Acoust Soc Am; 1990 Apr; 87(4):1648-55. PubMed ID: 2341668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spontaneous rates, thresholds and tuning of auditory-nerve fibers in the gerbil: comparisons to cat data.
    Schmiedt RA
    Hear Res; 1989 Oct; 42(1):23-35. PubMed ID: 2584157
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Auditory nerve representation of vowels in background noise.
    Sachs MB; Voigt HF; Young ED
    J Neurophysiol; 1983 Jul; 50(1):27-45. PubMed ID: 6875649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compound action potential input/output functions in young and quiet-aged gerbils.
    Hellstrom LI; Schmiedt RA
    Hear Res; 1990 Dec; 50(1-2):163-74. PubMed ID: 2076969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. II. Spontaneous rate.
    Guinan JJ; Gifford ML
    Hear Res; 1988 May; 33(2):115-27. PubMed ID: 3397322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Growth rate of simultaneous masking in cat auditory-nerve fibers: relationship to the growth of basilar-membrane motion and the origin of two-tone suppression.
    Pang XD; Guinan JJ
    J Acoust Soc Am; 1997 Dec; 102(6):3564-75. PubMed ID: 9407650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional correlates of characteristic frequency in single cochlear nerve fibers of the Mongolian gerbil.
    Ohlemiller KK; Echteler SM
    J Comp Physiol A; 1990 Aug; 167(3):329-38. PubMed ID: 2231475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Response properties of single auditory nerve fibers in the mouse.
    Taberner AM; Liberman MC
    J Neurophysiol; 2005 Jan; 93(1):557-69. PubMed ID: 15456804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies for the representation of a tone in background noise in the temporal aspects of the discharge patterns of auditory-nerve fibers.
    Miller MI; Barta PE; Sachs MB
    J Acoust Soc Am; 1987 Mar; 81(3):665-79. PubMed ID: 3584674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.