These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Evaluation of fetal exposure to external loud noise using a sheep model: quantification of in utero acoustic transmission across the human audio range. Gélat P; David AL; Haqhenas SR; Henriques J; Thibaut de Maisieres A; White T; Jauniaux E Am J Obstet Gynecol; 2019 Oct; 221(4):343.e1-343.e11. PubMed ID: 31152712 [TBL] [Abstract][Full Text] [Related]
5. The pathway enabling external sounds to reach and excite the fetal inner ear. Sohmer H; Perez R; Sichel JY; Priner R; Freeman S Audiol Neurootol; 2001; 6(3):109-16. PubMed ID: 11474136 [TBL] [Abstract][Full Text] [Related]
6. The pathway for the transmission of external sounds into the fetal inner ear. Sohmer H; Freeman S J Basic Clin Physiol Pharmacol; 2001; 12(2 Suppl):91-9. PubMed ID: 11605684 [TBL] [Abstract][Full Text] [Related]
12. Cochlear microphonics recorded from fetal and newborn sheep. Gerhardt KJ; Otto R; Abrams RM; Colle JJ; Burchfield DJ; Peters AJ Am J Otolaryngol; 1992; 13(4):226-33. PubMed ID: 1503196 [TBL] [Abstract][Full Text] [Related]
13. Effect of abdominal vibroacoustic stimulation on sound and acceleration levels at the head of the fetal sheep. Abrams RM; Peters AJ; Gerhardt KJ Obstet Gynecol; 1997 Aug; 90(2):216-20. PubMed ID: 9241296 [TBL] [Abstract][Full Text] [Related]
14. Fetal sheep in utero hear through bone conduction. Gerhardt KJ; Huang X; Arrington KE; Meixner K; Abrams RM; Antonelli PJ Am J Otolaryngol; 1996; 17(6):374-9. PubMed ID: 8944295 [TBL] [Abstract][Full Text] [Related]
15. [Study of bone vibration transmission on the child's head in utero]. Klopfenstein D; Beral Y; Escaillet B; Fourika F Rev Fr Gynecol Obstet; 1993 Jan; 88(1):39-44. PubMed ID: 8441887 [TBL] [Abstract][Full Text] [Related]
16. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans. Sun XM Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284 [TBL] [Abstract][Full Text] [Related]
17. Isolating the auditory system from acoustic noise during functional magnetic resonance imaging: examination of noise conduction through the ear canal, head, and body. Ravicz ME; Melcher JR J Acoust Soc Am; 2001 Jan; 109(1):216-31. PubMed ID: 11206150 [TBL] [Abstract][Full Text] [Related]
18. Underwater hearing and sound localization with and without an air interface. Shupak A; Sharoni Z; Yanir Y; Keynan Y; Alfie Y; Halpern P Otol Neurotol; 2005 Jan; 26(1):127-30. PubMed ID: 15699733 [TBL] [Abstract][Full Text] [Related]
19. Response of the premature fetus to stimulation by speech sounds. Zimmer EZ; Fifer WP; Kim YI; Rey HR; Chao CR; Myers MM Early Hum Dev; 1993 Jul; 33(3):207-15. PubMed ID: 8223316 [TBL] [Abstract][Full Text] [Related]
20. Changes in Doppler blood flow velocity in middle cerebral artery in response to airborne sound in low- and high-risk human fetuses. Dobrijević LjJ; Ljubić A; Sovilj M; Ribarić-Jankes K; Miković Z; Cerović N Int J Pediatr Otorhinolaryngol; 2009 Oct; 73(10):1381-4. PubMed ID: 19647332 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]