These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 8900003)
21. The pheA/tyrA/aroF region from Erwinia herbicola: an emerging comparative basis for analysis of gene organization and regulation in enteric bacteria. Xia T; Zhao G; Jensen RA J Mol Evol; 1993 Feb; 36(2):107-20. PubMed ID: 8094464 [TBL] [Abstract][Full Text] [Related]
22. Contribution of indole-3-acetic acid production to the epiphytic fitness of erwinia herbicola. Brandl MT; Lindow SE Appl Environ Microbiol; 1998 Sep; 64(9):3256-63. PubMed ID: 9726868 [TBL] [Abstract][Full Text] [Related]
23. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense. Jijón-Moreno S; Marcos-Jiménez C; Pedraza RO; Ramírez-Mata A; de Salamone IG; Fernández-Scavino A; Vásquez-Hernández CA; Soto-Urzúa L; Baca BE Antonie Van Leeuwenhoek; 2015 Jun; 107(6):1501-17. PubMed ID: 25842039 [TBL] [Abstract][Full Text] [Related]
24. Structure and function of indolepyruvate decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis. Koga J Biochim Biophys Acta; 1995 May; 1249(1):1-13. PubMed ID: 7766676 [No Abstract] [Full Text] [Related]
25. Evidence for the presence of DNA-binding proteins involved in regulation of the gene expression of indole-3-pyruvic acid decarboxylase, a key enzyme in indole-3-acetic acid biosynthesis in Azospirillum lipoferum FS. Yagi K; Chujo T; Nojiri H; Omori T; Nishiyama M; Yamane H Biosci Biotechnol Biochem; 2001 May; 65(5):1265-9. PubMed ID: 11440156 [TBL] [Abstract][Full Text] [Related]
26. Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Manulis S; Haviv-Chesner A; Brandl MT; Lindow SE; Barash I Mol Plant Microbe Interact; 1998 Jul; 11(7):634-42. PubMed ID: 9650296 [TBL] [Abstract][Full Text] [Related]
27. Tryptophan, thiamine and indole-3-acetic acid exchange between Chlorella sorokiniana and the plant growth-promoting bacterium Azospirillum brasilense. Palacios OA; Gomez-Anduro G; Bashan Y; de-Bashan LE FEMS Microbiol Ecol; 2016 Jun; 92(6):fiw077. PubMed ID: 27090758 [TBL] [Abstract][Full Text] [Related]
28. Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense. Vande Broek A; Lambrecht M; Eggermont K; Vanderleyden J J Bacteriol; 1999 Feb; 181(4):1338-42. PubMed ID: 9973364 [TBL] [Abstract][Full Text] [Related]
29. Characterization of phenylpyruvate decarboxylase, involved in auxin production of Azospirillum brasilense. Spaepen S; Versées W; Gocke D; Pohl M; Steyaert J; Vanderleyden J J Bacteriol; 2007 Nov; 189(21):7626-33. PubMed ID: 17766418 [TBL] [Abstract][Full Text] [Related]
30. Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. Sardar P; Kempken F PLoS One; 2018; 13(2):e0192293. PubMed ID: 29420579 [TBL] [Abstract][Full Text] [Related]
31. Auxin production by the plant trypanosomatid Phytomonas serpens and auxin homoeostasis in infected tomato fruits. Ienne S; Freschi L; Vidotto VF; De Souza TA; Purgatto E; Zingales B Parasitology; 2014 Sep; 141(10):1299-310. PubMed ID: 24805281 [TBL] [Abstract][Full Text] [Related]
32. Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. Jasim B; Jimtha John C; Shimil V; Jyothis M; Radhakrishnan EK J Appl Microbiol; 2014 Sep; 117(3):786-99. PubMed ID: 24916921 [TBL] [Abstract][Full Text] [Related]
33. The presence of hrp genes on the pathogenicity-associated plasmid of the tumorigenic bacterium Erwinia herbicola pv. gypsophilae. Nizan R; Barash I; Valinsky L; Lichter A; Manulis S Mol Plant Microbe Interact; 1997 Jul; 10(5):677-82. PubMed ID: 9204571 [TBL] [Abstract][Full Text] [Related]
34. Identification and isolation of the indole-3-pyruvate decarboxylase gene from Azospirillum brasilense Sp7: sequencing and functional analysis of the gene locus. Zimmer W; Wesche M; Timmermans L Curr Microbiol; 1998 Jun; 36(6):327-31. PubMed ID: 9608743 [TBL] [Abstract][Full Text] [Related]
35. Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Lin HR; Shu HY; Lin GH Microbiol Res; 2018 Nov; 216():30-39. PubMed ID: 30269854 [TBL] [Abstract][Full Text] [Related]
36. Production of L-dihydroxyphenylalanine in Escherichia coli with the tyrosine phenol-lyase gene cloned from Erwinia herbicola. Foor F; Morin N; Bostian KA Appl Environ Microbiol; 1993 Sep; 59(9):3070-5. PubMed ID: 8215376 [TBL] [Abstract][Full Text] [Related]
37. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz A; Golbik R; König S; Hübner G; Tittmann K Biochemistry; 2005 Apr; 44(16):6164-79. PubMed ID: 15835904 [TBL] [Abstract][Full Text] [Related]
38. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Patten CL; Glick BR Appl Environ Microbiol; 2002 Aug; 68(8):3795-801. PubMed ID: 12147474 [TBL] [Abstract][Full Text] [Related]
39. Growth and indole-3-acetic acid biosynthesis of Azospirillum brasilense Sp245 is environmentally controlled. Ona O; Van Impe J; Prinsen E; Vanderleyden J FEMS Microbiol Lett; 2005 May; 246(1):125-32. PubMed ID: 15869971 [TBL] [Abstract][Full Text] [Related]
40. Cloning and expression of the Erwinia herbicola tyrosine phenol-lyase gene in Escherichia coli. Iwamori S; Oikawa T; Ishiwata K; Makiguchi N Biotechnol Appl Biochem; 1992 Aug; 16(1):77-85. PubMed ID: 1418690 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]