These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 8900008)
1. Altered binding of the Cry1Ac toxin to larval membranes but not to the toxin-binding protein in Plodia interpunctella selected for resistance to different Bacillus thuringiensis isolates. Mohammed SI; Johnson DE; Aronson AI Appl Environ Microbiol; 1996 Nov; 62(11):4168-73. PubMed ID: 8900008 [TBL] [Abstract][Full Text] [Related]
2. Integrative model for binding of Bacillus thuringiensis toxins in susceptible and resistant larvae of the diamondback moth (Plutella xylostella). Ballester V; Granero F; Tabashnik BE; Malvar T; Ferré J Appl Environ Microbiol; 1999 Apr; 65(4):1413-9. PubMed ID: 10103230 [TBL] [Abstract][Full Text] [Related]
3. Genetic and biochemical approach for characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella. Sayyed AH; Haward R; Herrero S; Ferré J; Wright DJ Appl Environ Microbiol; 2000 Apr; 66(4):1509-16. PubMed ID: 10742234 [TBL] [Abstract][Full Text] [Related]
4. Different mechanisms of resistance to Bacillus thuringiensis toxins in the indianmeal moth. Herrero S; Oppert B; Ferré J Appl Environ Microbiol; 2001 Mar; 67(3):1085-9. PubMed ID: 11229895 [TBL] [Abstract][Full Text] [Related]
5. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
6. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. Valaitis AP J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544 [TBL] [Abstract][Full Text] [Related]
7. Development and mechanisms of resistance to Bacillus thuringiensis endotoxin Cry1Ac in the American bollworm, Helicoverpa armigera (Hübner). Chandrashekar K; Gujar GT Indian J Exp Biol; 2004 Feb; 42(2):164-73. PubMed ID: 15282949 [TBL] [Abstract][Full Text] [Related]
8. Altered Glycosylation of 63- and 68-kilodalton microvillar proteins in Heliothis virescens correlates with reduced Cry1 toxin binding, decreased pore formation, and increased resistance to Bacillus thuringiensis Cry1 toxins. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2002 Nov; 68(11):5711-7. PubMed ID: 12406769 [TBL] [Abstract][Full Text] [Related]
9. Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. Gómez I; Oltean DI; Gill SS; Bravo A; Soberón M J Biol Chem; 2001 Aug; 276(31):28906-12. PubMed ID: 11384982 [TBL] [Abstract][Full Text] [Related]
10. A binding site for Bacillus thuringiensis Cry1Ab toxin is lost during larval development in two forest pests. Rausell C; Martínez-Ramírez AC; García-Robles I; Real MD Appl Environ Microbiol; 2000 Apr; 66(4):1553-8. PubMed ID: 10742241 [TBL] [Abstract][Full Text] [Related]
11. Resistance to Bacillus thuringiensis CryIA delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Lee MK; Rajamohan F; Gould F; Dean DH Appl Environ Microbiol; 1995 Nov; 61(11):3836-42. PubMed ID: 8526494 [TBL] [Abstract][Full Text] [Related]
12. Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac. Sayyed AH; Gatsi R; Ibiza-Palacios MS; Escriche B; Wright DJ; Crickmore N Appl Environ Microbiol; 2005 Nov; 71(11):6863-9. PubMed ID: 16269720 [TBL] [Abstract][Full Text] [Related]
13. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Jurat-Fuentes JL; Gould FL; Adang MJ Appl Environ Microbiol; 2003 Oct; 69(10):5898-906. PubMed ID: 14532042 [TBL] [Abstract][Full Text] [Related]
14. Lack of detrimental effects of Bacillus thuringiensis Cry toxins on the insect predator Chrysoperla carnea: a toxicological, histopathological, and biochemical analysis. Rodrigo-Simón A; de Maagd RA; Avilla C; Bakker PL; Molthoff J; González-Zamora JE; Ferré J Appl Environ Microbiol; 2006 Feb; 72(2):1595-603. PubMed ID: 16461715 [TBL] [Abstract][Full Text] [Related]
15. Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Estela A; Escriche B; Ferré J Appl Environ Microbiol; 2004 Mar; 70(3):1378-84. PubMed ID: 15006756 [TBL] [Abstract][Full Text] [Related]
16. Role of Bacillus thuringiensis Cry1 delta endotoxin binding in determining potency during lepidopteran larval development. Gilliland A; Chambers CE; Bone EJ; Ellar DJ Appl Environ Microbiol; 2002 Apr; 68(4):1509-15. PubMed ID: 11916662 [TBL] [Abstract][Full Text] [Related]
17. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Tabashnik BE; Finson N; Groeters FR; Moar WJ; Johnson MW; Luo K; Adang MJ Proc Natl Acad Sci U S A; 1994 May; 91(10):4120-4. PubMed ID: 8183881 [TBL] [Abstract][Full Text] [Related]
18. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
19. The HevCaLP protein mediates binding specificity of the Cry1A class of Bacillus thuringiensis toxins in Heliothis virescens. Jurat-Fuentes JL; Gahan LJ; Gould FL; Heckel DG; Adang MJ Biochemistry; 2004 Nov; 43(44):14299-305. PubMed ID: 15518581 [TBL] [Abstract][Full Text] [Related]