These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 8900195)
1. The catalytic domain of Acanthamoeba myosin I heavy chain kinase. I. Identification and characterization following tryptic cleavage of the native enzyme. Brzeska H; Martin BM; Korn ED J Biol Chem; 1996 Oct; 271(43):27049-55. PubMed ID: 8900195 [TBL] [Abstract][Full Text] [Related]
2. The catalytic domain of acanthamoeba myosin I heavy chain kinase. II. Expression of active catalytic domain and sequence homology to p21-activated kinase (PAK). Brzeska H; Szczepanowska J; Hoey J; Korn ED J Biol Chem; 1996 Oct; 271(43):27056-62. PubMed ID: 8900196 [TBL] [Abstract][Full Text] [Related]
3. Preparation of a phospholipid-insensitive, autophosphorylation-activated catalytic fragment of Acanthamoeba myosin I heavy chain kinase. Brzeska H; Martin B; Kulesza-Lipka D; Baines I; Korn ED J Biol Chem; 1992 Mar; 267(7):4949-56. PubMed ID: 1311323 [TBL] [Abstract][Full Text] [Related]
4. Limited tryptic digestion of Acanthamoeba myosin IA abolishes regulation of actin-activated ATPase activity by heavy chain phosphorylation. Lynch TJ; Brzeska H; Korn ED J Biol Chem; 1987 Oct; 262(28):13842-9. PubMed ID: 2958454 [TBL] [Abstract][Full Text] [Related]
5. Localization of the actin-binding sites of Acanthamoeba myosin IB and effect of limited proteolysis on its actin-activated Mg2+-ATPase activity. Brzeska H; Lynch TJ; Korn ED J Biol Chem; 1988 Jan; 263(1):427-35. PubMed ID: 2961746 [TBL] [Abstract][Full Text] [Related]
6. The effect of actin and phosphorylation on the tryptic cleavage pattern of Acanthamoeba myosin IA. Brzeska H; Lynch TJ; Korn ED J Biol Chem; 1989 Jun; 264(17):10243-50. PubMed ID: 2524493 [TBL] [Abstract][Full Text] [Related]
7. Identification by mass spectrometry of the phosphorylated residue responsible for activation of the catalytic domain of myosin I heavy chain kinase, a member of the PAK/STE20 family. Szczepanowska J; Zhang X; Herring CJ; Qin J; Korn ED; Brzeska H Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8503-8. PubMed ID: 9238006 [TBL] [Abstract][Full Text] [Related]
8. Substrate specificity of Acanthamoeba myosin I heavy chain kinase as determined with synthetic peptides. Brzeska H; Lynch TJ; Martin B; Corigliano-Murphy A; Korn ED J Biol Chem; 1990 Sep; 265(27):16138-44. PubMed ID: 2168881 [TBL] [Abstract][Full Text] [Related]
9. Myosin I heavy chain kinase: cloning of the full-length gene and acidic lipid-dependent activation by Rac and Cdc42. Brzeska H; Young R; Knaus U; Korn ED Proc Natl Acad Sci U S A; 1999 Jan; 96(2):394-9. PubMed ID: 9892644 [TBL] [Abstract][Full Text] [Related]
10. Inhibition of Acanthamoeba myosin I heavy chain kinase by Ca(2+)-calmodulin. Brzeska H; Kulesza-Lipka D; Korn ED J Biol Chem; 1992 Nov; 267(33):23870-5. PubMed ID: 1331103 [TBL] [Abstract][Full Text] [Related]
11. Acanthamoeba myosin I heavy chain kinase is activated by phosphatidylserine-enhanced phosphorylation. Brzeska H; Lynch TJ; Korn ED J Biol Chem; 1990 Mar; 265(7):3591-4. PubMed ID: 2154483 [TBL] [Abstract][Full Text] [Related]
12. Identification of three phosphorylation sites on each heavy chain of Acanthamoeba myosin II. Côté GP; Collins JH; Korn ED J Biol Chem; 1981 Dec; 256(24):12811-6. PubMed ID: 6118366 [TBL] [Abstract][Full Text] [Related]
13. Effect of mutating the regulatory phosphoserine and conserved threonine on the activity of the expressed catalytic domain of Acanthamoeba myosin I heavy chain kinase. Szczepanowska J; Ramachandran U; Herring CJ; Gruschus JM; Qin J; Korn ED; Brzeska H Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4146-51. PubMed ID: 9539704 [TBL] [Abstract][Full Text] [Related]
14. Autophosphorylation-independent activation of Acanthamoeba myosin I heavy chain kinase by plasma membranes. Kulesza-Lipka D; Brzeska H; Baines IC; Korn ED J Biol Chem; 1993 Aug; 268(24):17995-8001. PubMed ID: 8394357 [TBL] [Abstract][Full Text] [Related]
15. Properties of Acanthamoeba myosin I heavy chain kinase bound to phospholipid vesicles. Wang ZY; Brzeska H; Baines IC; Korn ED J Biol Chem; 1995 Nov; 270(46):27969-76. PubMed ID: 7499274 [TBL] [Abstract][Full Text] [Related]
16. Functional consequences of the proteolytic removal of regulatory serines from the nonhelical tailpiece of Acanthamoeba myosin II. Sathyamoorthy V; Atkinson MA; Bowers B; Korn ED Biochemistry; 1990 Apr; 29(15):3793-7. PubMed ID: 2160267 [TBL] [Abstract][Full Text] [Related]
17. Identification of two phosphorylated threonines in the tail region of Dictyostelium myosin II. Vaillancourt JP; Lyons C; Côté GP J Biol Chem; 1988 Jul; 263(21):10082-7. PubMed ID: 2839474 [TBL] [Abstract][Full Text] [Related]
18. The localization and sequence of the phosphorylation sites of Acanthamoeba myosins I. An improved method for locating the phosphorylated amino acid. Brzeska H; Lynch TJ; Martin B; Korn ED J Biol Chem; 1989 Nov; 264(32):19340-8. PubMed ID: 2530230 [TBL] [Abstract][Full Text] [Related]
19. Purification and characterization of a myosin I heavy chain kinase from Acanthamoeba castellanii. Hammer JA; Albanesi JP; Korn ED J Biol Chem; 1983 Aug; 258(16):10168-75. PubMed ID: 6309772 [TBL] [Abstract][Full Text] [Related]
20. Phosphorylation and activation of smooth muscle myosin by Acanthamoeba myosin I heavy chain kinase. Hammer JA; Sellers JR; Korn ED J Biol Chem; 1984 Mar; 259(5):3224-9. PubMed ID: 6321501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]