These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 8900281)
1. Shared neural control of attentional shifts and eye movements. Kustov AA; Robinson DL Nature; 1996 Nov; 384(6604):74-7. PubMed ID: 8900281 [TBL] [Abstract][Full Text] [Related]
2. Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Ignashchenkova A; Dicke PW; Haarmeier T; Thier P Nat Neurosci; 2004 Jan; 7(1):56-64. PubMed ID: 14699418 [TBL] [Abstract][Full Text] [Related]
3. Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control. Choi WY; Guitton D Neuron; 2006 May; 50(3):491-505. PubMed ID: 16675402 [TBL] [Abstract][Full Text] [Related]
4. The superior colliculus encodes gaze commands in retinal coordinates. Klier EM; Wang H; Crawford JD Nat Neurosci; 2001 Jun; 4(6):627-32. PubMed ID: 11369944 [TBL] [Abstract][Full Text] [Related]
5. Distinguishing subcortical and cortical influences in visual attention. Subcortical attentional processing. Zackon DH; Casson EJ; Stelmach L; Faubert J; Racette L Invest Ophthalmol Vis Sci; 1997 Feb; 38(2):364-71. PubMed ID: 9040469 [TBL] [Abstract][Full Text] [Related]
7. Top-down control of saccades as part of a generalized model of proactive inhibitory control. Ballanger B J Neurophysiol; 2009 Nov; 102(5):2578-80. PubMed ID: 19710373 [TBL] [Abstract][Full Text] [Related]
8. Role of superior colliculus in adaptive eye-head coordination during gaze shifts. Constantin AG; Wang H; Crawford JD J Neurophysiol; 2004 Oct; 92(4):2168-84. PubMed ID: 15190087 [TBL] [Abstract][Full Text] [Related]
9. Fixation neurons in the superior colliculus encode distance between current and desired gaze positions. Bergeron A; Guitton D Nat Neurosci; 2000 Sep; 3(9):932-9. PubMed ID: 10966625 [TBL] [Abstract][Full Text] [Related]
10. Superior colliculus encodes distance to target, not saccade amplitude, in multi-step gaze shifts. Bergeron A; Matsuo S; Guitton D Nat Neurosci; 2003 Apr; 6(4):404-13. PubMed ID: 12627166 [TBL] [Abstract][Full Text] [Related]
11. Frames of reference for gaze saccades evoked during stimulation of lateral intraparietal cortex. Constantin AG; Wang H; Martinez-Trujillo JC; Crawford JD J Neurophysiol; 2007 Aug; 98(2):696-709. PubMed ID: 17553952 [TBL] [Abstract][Full Text] [Related]
12. Effects of eye position upon activity of neurons in macaque superior colliculus. Campos M; Cherian A; Segraves MA J Neurophysiol; 2006 Jan; 95(1):505-26. PubMed ID: 16192333 [TBL] [Abstract][Full Text] [Related]
13. Target selection for saccadic eye movements: direction-selective visual responses in the superior colliculus. Horwitz GD; Newsome WT J Neurophysiol; 2001 Nov; 86(5):2527-42. PubMed ID: 11698540 [TBL] [Abstract][Full Text] [Related]
14. Population coding of saccadic eye movements by neurons in the superior colliculus. Lee C; Rohrer WH; Sparks DL Nature; 1988 Mar; 332(6162):357-60. PubMed ID: 3352733 [TBL] [Abstract][Full Text] [Related]
17. A model of modes of attention and inattention for artificial perception. Witkowski M; Randell D Bioinspir Biomim; 2007 Sep; 2(3):S94-S115. PubMed ID: 17848788 [TBL] [Abstract][Full Text] [Related]
18. The brain stem saccadic burst generator encodes gaze in three-dimensional space. Van Horn MR; Sylvestre PA; Cullen KE J Neurophysiol; 2008 May; 99(5):2602-16. PubMed ID: 18337361 [TBL] [Abstract][Full Text] [Related]
19. Look away: the anti-saccade task and the voluntary control of eye movement. Munoz DP; Everling S Nat Rev Neurosci; 2004 Mar; 5(3):218-28. PubMed ID: 14976521 [No Abstract] [Full Text] [Related]
20. Microsaccade directions do not predict directionality of illusory brightness changes of overlapping transparent surfaces. Tse PU; Caplovitz GP; Hsieh PJ Vision Res; 2006 Oct; 46(22):3823-30. PubMed ID: 16934310 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]