These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 8901552)

  • 1. Redesigning secondary structure to invert coenzyme specificity in isopropylmalate dehydrogenase.
    Chen R; Greer A; Dean AM
    Proc Natl Acad Sci U S A; 1996 Oct; 93(22):12171-6. PubMed ID: 8901552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesigning the substrate specificity of an enzyme: isocitrate dehydrogenase.
    Doyle SA; Fung SY; Koshland DE
    Biochemistry; 2000 Nov; 39(46):14348-55. PubMed ID: 11087384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity.
    Lerchner A; Jarasch A; Meining W; Schiefner A; Skerra A
    Biotechnol Bioeng; 2013 Nov; 110(11):2803-14. PubMed ID: 23686719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-enzyme specificity of 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8.
    Miyazaki K; Oshima T
    Protein Eng; 1994 Mar; 7(3):401-3. PubMed ID: 8177889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate recognition of isocitrate dehydrogenase and 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8.
    Yaoi T; Miyazaki K; Oshima T
    J Biochem; 1997 Jan; 121(1):77-81. PubMed ID: 9058195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel substrate specificity of designer 3-isopropylmalate dehydrogenase derived from Thermus thermophilus HB8.
    Fujita M; Tamegai H; Eguchi T; Kakinuma K
    Biosci Biotechnol Biochem; 2001 Dec; 65(12):2695-700. PubMed ID: 11826966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. His273 of 3-isopropylmalate dehydrogenase from Thermus thermophilus HB8 is involved in the coenzyme binding.
    Yaoi T; Miyazaki K; Oshima T
    Biochem Biophys Res Commun; 1995 May; 210(3):733-7. PubMed ID: 7763246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling substrate binding in Thermus thermophilus isopropylmalate dehydrogenase.
    Zhang T; Koshland DE
    Protein Sci; 1995 Jan; 4(1):84-92. PubMed ID: 7773180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly active decarboxylating dehydrogenase with rationally inverted coenzyme specificity.
    Chen R; Greer A; Dean AM
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11666-70. PubMed ID: 8524825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ser67Asp and His68Asp substitutions in candida parapsilosis carbonyl reductase alter the coenzyme specificity and enantioselectivity of ketone reduction.
    Zhang R; Xu Y; Sun Y; Zhang W; Xiao R
    Appl Environ Microbiol; 2009 Apr; 75(7):2176-83. PubMed ID: 19201968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration of coenzyme specificity of malate dehydrogenase from Thermus flavus by site-directed mutagenesis.
    Nishiyama M; Birktoft JJ; Beppu T
    J Biol Chem; 1993 Mar; 268(7):4656-60. PubMed ID: 8444839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyr-139 in Thermus thermophilus 3-isopropylmalate dehydrogenase is involved in catalytic function.
    Miyazaki K; Oshima T
    FEBS Lett; 1993 Oct; 332(1-2):37-8. PubMed ID: 8405446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coenzyme Engineering of a Hyperthermophilic 6-Phosphogluconate Dehydrogenase from NADP
    Chen H; Zhu Z; Huang R; Zhang YP
    Sci Rep; 2016 Nov; 6():36311. PubMed ID: 27805055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of glutamate 87 in the kinetic mechanism of Thermus thermophilus isopropylmalate dehydrogenase.
    Dean AM; Dvorak L
    Protein Sci; 1995 Oct; 4(10):2156-67. PubMed ID: 8535253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-guided alteration of coenzyme specificity of formate dehydrogenase by saturation mutagenesis to enable efficient utilization of NADP+.
    Andreadeli A; Platis D; Tishkov V; Popov V; Labrou NE
    FEBS J; 2008 Aug; 275(15):3859-69. PubMed ID: 18616465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional prediction: identification of protein orthologs and paralogs.
    Chen R; Jeong SS
    Protein Sci; 2000 Dec; 9(12):2344-53. PubMed ID: 11206056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermostabilization of a chimeric enzyme by residue substitutions: four amino acid residues in loop regions are responsible for the thermostability of Thermus thermophilus isopropylmalate dehydrogenase.
    Numata K; Hayashi-Iwasaki Y; Kawaguchi J; Sakurai M; Moriyama H; Tanaka N; Oshima T
    Biochim Biophys Acta; 2001 Feb; 1545(1-2):174-83. PubMed ID: 11342043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H).
    Bubner P; Klimacek M; Nidetzky B
    FEBS Lett; 2008 Jan; 582(2):233-7. PubMed ID: 18082142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design, X-ray crystallography, molecular modelling and thermal stability studies of mutant enzymes at site 172 of 3-isopropylmalate dehydrogenase from Thermus thermophilus.
    Qu C; Akanuma S; Tanaka N; Moriyama H; Oshima T
    Acta Crystallogr D Biol Crystallogr; 2001 Feb; 57(Pt 2):225-32. PubMed ID: 11173468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase.
    Dean AM; Golding GB
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3104-9. PubMed ID: 9096353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.