BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 8902263)

  • 1. Bioactivation of S-(2,2-dihalo-1,1-difluoroethyl)-L-cysteines and S-(trihalovinyl)-L-cysteines by cysteine S-conjugate beta-lyase: indications for formation of both thionoacylating species and thiiranes as reactive intermediates.
    Commandeur JN; King LJ; Koymans L; Vermeulen NP
    Chem Res Toxicol; 1996; 9(7):1092-102. PubMed ID: 8902263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactivation of the cysteine-S-conjugate and mercapturic acid of tetrafluoroethylene to acylating reactive intermediates in the rat: dependence of activation and deactivation activities on acetyl coenzyme A availability.
    Commandeur JN; De Kanter FJ; Vermeulen NP
    Mol Pharmacol; 1989 Oct; 36(4):654-63. PubMed ID: 2811861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine conjugate beta-lyase-catalyzed bioactivation of bromine-containing cysteine S-conjugates: stoichiometry and formation of 2,2-difluoro-3-halothiiranes.
    Finkelstein MB; Dekant W; Anders MW
    Chem Res Toxicol; 1996; 9(1):227-31. PubMed ID: 8924595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine conjugate beta-lyase-dependent biotransformation of the cysteine S-conjugates of the sevoflurane degradation product 2-(fluoromethoxy)-1,1,3,3,3-pentafluoro-1-propene (compound A).
    Iyer RA; Anders MW
    Chem Res Toxicol; 1997 Jul; 10(7):811-9. PubMed ID: 9250416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical evaluation of two plausible routes for bioactivation of S-(1,1-difluoro-2,2-dihaloethyl)-L-cysteine conjugates: thiirane vs thionoacyl fluoride pathway.
    Shim JY; Richard AM
    Chem Res Toxicol; 1997 Jan; 10(1):103-10. PubMed ID: 9074809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of L-cysteine S-conjugates and N-(trideuteroacetyl)-L-cysteine S-conjugates of four fluoroethylenes in the rat. Role of balance of deacetylation and acetylation in relation to the nephrotoxicity of mercapturic acids.
    Commandeur JN; Stijntjes GJ; Wijngaard J; Vermeulen NP
    Biochem Pharmacol; 1991 Jun; 42(1):31-8. PubMed ID: 2069595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nephrotoxicity of mercapturic acids of three structurally related 2,2-difluoroethylenes in the rat. Indications for different bioactivation mechanisms.
    Commandeur JN; Brakenhoff JP; De Kanter FJ; Vermeulen NP
    Biochem Pharmacol; 1988 Dec; 37(23):4495-504. PubMed ID: 3202890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells.
    McGoldrick TA; Lock EA; Rodilla V; Hawksworth GM
    Arch Toxicol; 2003 Jul; 77(7):365-70. PubMed ID: 12700887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxicity of the cysteine-S-conjugates and mercapturic acids of four structurally related difluoroethylenes in isolated proximal tubular cells from rat kidney. Uptake of the conjugates and activation to toxic metabolites.
    Boogaard PJ; Commandeur JN; Mulder GJ; Vermeulen NP; Nagelkerke JF
    Biochem Pharmacol; 1989 Nov; 38(21):3731-41. PubMed ID: 2597169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioactivation of selenocysteine Se-conjugates by a highly purified rat renal cysteine conjugate beta-lyase/glutamine transaminase K.
    Commandeur JN; Andreadou I; Rooseboom M; Out M; de Leur LJ; Groot E; Vermeulen NP
    J Pharmacol Exp Ther; 2000 Aug; 294(2):753-61. PubMed ID: 10900257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioactivation mechanism of the cytotoxic and nephrotoxic S-conjugate S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine.
    Dekant W; Lash LH; Anders MW
    Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7443-7. PubMed ID: 3478703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of cysteine conjugate beta-lyase and S-oxidase in nephrotoxicity: studies with S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)-L-cysteine sulfoxide.
    Lash LH; Sausen PJ; Duescher RJ; Cooley AJ; Elfarra AA
    J Pharmacol Exp Ther; 1994 Apr; 269(1):374-83. PubMed ID: 8169843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for metabolism of fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A), a sevoflurane degradation product, by cysteine conjugate beta-lyase.
    Spracklin DK; Kharasch ED
    Chem Res Toxicol; 1996 Jun; 9(4):696-702. PubMed ID: 8831812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorothioketene, the ultimate reactive intermediate formed by cysteine conjugate beta-lyase-mediated cleavage of the trichloroethene metabolite S-(1,2-Dichlorovinyl)-L-cysteine, forms cytosine adducts in organic solvents, but not in aqueous solution.
    Völkel W; Dekant W
    Chem Res Toxicol; 1998 Sep; 11(9):1082-8. PubMed ID: 9760283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine S-conjugates may act as kidney-selective prodrugs: formation of 6-mercaptopurine by the renal metabolism of S-(6-purinyl)-L-cysteine.
    Hwang IY; Elfarra AA
    J Pharmacol Exp Ther; 1989 Nov; 251(2):448-54. PubMed ID: 2810108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. L-alanine-glyoxylate aminotransferase II of rat kidney and liver mitochondria possesses cysteine S-conjugate beta-lyase activity: a contributing factor to the nephrotoxicity/hepatotoxicity of halogenated alkenes?
    Cooper AJ; Krasnikov BF; Okuno E; Jeitner TM
    Biochem J; 2003 Nov; 376(Pt 1):169-78. PubMed ID: 12859250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of difluorothionoacetyl-protein adducts by S-(1,1,2,2-tetrafluoroethyl)-L-cysteine metabolites: nucleophilic catalysis of stable lysyl adduct formation by histidine and tyrosine.
    Hayden PJ; Yang Y; Ward AJ; Dulik DM; McCann DJ; Stevens JL
    Biochemistry; 1991 Jun; 30(24):5935-43. PubMed ID: 1904276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alpha-ketoacids stimulate rat renal cysteine conjugate beta-lyase activity and potentiate the cytotoxicity of S-(1,2-dichlorovinyl)-L-cysteine.
    Elfarra AA; Lash LH; Anders MW
    Mol Pharmacol; 1987 Feb; 31(2):208-12. PubMed ID: 3807895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of three N-acetyl-L-cysteine monoadducts and one diadduct by the reaction of S-(1,2-dichlorovinyl)-L-cysteine sulfoxide with N-acetyl-L-cysteine at physiological conditions: chemical mechanisms and toxicological implications.
    Barshteyn N; Elfarra AA
    Chem Res Toxicol; 2007 Oct; 20(10):1563-9. PubMed ID: 17892265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotransformation, excretion, and nephrotoxicity of the hexachlorobutadiene metabolite (E)-N-acetyl-S-(1,2,3,4, 4-pentachlorobutadienyl)-L-cysteine sulfoxide.
    Birner G; Werner M; Rosner E; Mehler C; Dekant W
    Chem Res Toxicol; 1998 Jul; 11(7):750-7. PubMed ID: 9671537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.