These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 8902354)

  • 21. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen bond indices and tertiary structure of yeast tRNAPhe.
    de Giambiagi MS; Giambiagi M; Esquivel DM
    Z Naturforsch C Biosci; 1983; 38(7-8):621-30. PubMed ID: 6356669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Direct ¹³C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA.
    Fürtig B; Schnieders R; Richter C; Zetzsche H; Keyhani S; Helmling C; Kovacs H; Schwalbe H
    J Biomol NMR; 2016 Mar; 64(3):207-21. PubMed ID: 26852414
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of RNA structures based on hydrogen bond and base-base stacking patterns: application for NMR structures.
    Takasu A; Watanabe K; Kawai G
    J Biochem; 2002 Aug; 132(2):211-5. PubMed ID: 12153717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds.
    François JC; Hélène C
    Biochemistry; 1995 Jan; 34(1):65-72. PubMed ID: 7819224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. At nonzero temperatures, stacked structures of methylated nucleic acid base pairs and microhydrated nonmethylated nucleic acid base pairs are favored over planar hydrogen-bonded structures: a molecular dynamics simulations study.
    Kabelác M; Hobza P
    Chemistry; 2001 May; 7(10):2067-74. PubMed ID: 11411979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence and structural conservation in RNA ribose zippers.
    Tamura M; Holbrook SR
    J Mol Biol; 2002 Jul; 320(3):455-74. PubMed ID: 12096903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. COGNAC: a web server for searching and annotating hydrogen-bonded base interactions in RNA three-dimensional structures.
    Firdaus-Raih M; Hamdani HY; Nadzirin N; Ramlan EI; Willett P; Artymiuk PJ
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W382-8. PubMed ID: 24831543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The loss of a hydrogen bond: Thermodynamic contributions of a non-standard nucleotide.
    Jolley EA; Znosko BM
    Nucleic Acids Res; 2017 Feb; 45(3):1479-1487. PubMed ID: 28180321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computational approach to modeling nucleic acid hairpin structures.
    Tung CS
    Biophys J; 1997 Feb; 72(2 Pt 1):876-85. PubMed ID: 9017213
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tools for the automatic identification and classification of RNA base pairs.
    Yang H; Jossinet F; Leontis N; Chen L; Westbrook J; Berman H; Westhof E
    Nucleic Acids Res; 2003 Jul; 31(13):3450-60. PubMed ID: 12824344
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential functions for hydrogen bonds in protein structure prediction and design.
    Morozov AV; Kortemme T
    Adv Protein Chem; 2005; 72():1-38. PubMed ID: 16581371
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids.
    Duchardt-Ferner E; Wöhnert J
    J Biomol NMR; 2017 Oct; 69(2):101-110. PubMed ID: 29032519
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of DNA with clusters of amino acids in proteins.
    Sathyapriya R; Vishveshwara S
    Nucleic Acids Res; 2004; 32(14):4109-18. PubMed ID: 15302912
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometric nomenclature and classification of RNA base pairs.
    Leontis NB; Westhof E
    RNA; 2001 Apr; 7(4):499-512. PubMed ID: 11345429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. HBAT: a complete package for analysing strong and weak hydrogen bonds in macromolecular crystal structures.
    Tiwari A; Panigrahi SK
    In Silico Biol; 2007; 7(6):651-61. PubMed ID: 18467777
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery.
    Wadley LM; Pyle AM
    Nucleic Acids Res; 2004; 32(22):6650-9. PubMed ID: 15608296
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H-bond stability in the tRNA(Asp) anticodon hairpin: 3 ns of multiple molecular dynamics simulations.
    Auffinger P; Westhof E
    Biophys J; 1996 Aug; 71(2):940-54. PubMed ID: 8842234
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitative analysis of nucleic acid three-dimensional structures.
    Gendron P; Lemieux S; Major F
    J Mol Biol; 2001 May; 308(5):919-36. PubMed ID: 11352582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.