These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 8902535)
1. The role of iron-sulfur clusters in in vivo hydroxyl radical production. Liochev SL Free Radic Res; 1996 Nov; 25(5):369-84. PubMed ID: 8902535 [TBL] [Abstract][Full Text] [Related]
2. The role of O2.- in the production of HO.: in vitro and in vivo. Liochev SI; Fridovich I Free Radic Biol Med; 1994 Jan; 16(1):29-33. PubMed ID: 8299992 [TBL] [Abstract][Full Text] [Related]
3. Repair of oxidized iron-sulfur clusters in Escherichia coli. Djaman O; Outten FW; Imlay JA J Biol Chem; 2004 Oct; 279(43):44590-9. PubMed ID: 15308657 [TBL] [Abstract][Full Text] [Related]
4. Superoxide and the production of oxidative DNA damage. Keyer K; Gort AS; Imlay JA J Bacteriol; 1995 Dec; 177(23):6782-90. PubMed ID: 7592468 [TBL] [Abstract][Full Text] [Related]
5. Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. Jang S; Imlay JA J Biol Chem; 2007 Jan; 282(2):929-37. PubMed ID: 17102132 [TBL] [Abstract][Full Text] [Related]
6. Escherichia coli FtnA acts as an iron buffer for re-assembly of iron-sulfur clusters in response to hydrogen peroxide stress. Bitoun JP; Wu G; Ding H Biometals; 2008 Dec; 21(6):693-703. PubMed ID: 18618270 [TBL] [Abstract][Full Text] [Related]
7. Binding of myeloperoxidase to bacteria: effect on hydroxyl radical formation and susceptibility to oxidant-mediated killing. Britigan BE; Ratcliffe HR; Buettner GR; Rosen GM Biochim Biophys Acta; 1996 Aug; 1290(3):231-40. PubMed ID: 8765125 [TBL] [Abstract][Full Text] [Related]
8. An intracellular iron chelator pleiotropically suppresses enzymatic and growth defects of superoxide dismutase-deficient Escherichia coli. Maringanti S; Imlay JA J Bacteriol; 1999 Jun; 181(12):3792-802. PubMed ID: 10368155 [TBL] [Abstract][Full Text] [Related]
13. Superoxide and hydrogen peroxide-dependent inhibition of iron regulatory protein activity: a protective stratagem against oxidative injury. Cairo G; Castrusini E; Minotti G; Bernelli-Zazzera A FASEB J; 1996 Sep; 10(11):1326-35. PubMed ID: 8836047 [TBL] [Abstract][Full Text] [Related]
14. Aconitases: Non-redox Iron-Sulfur Proteins Sensitive to Reactive Species. Castro L; Tórtora V; Mansilla S; Radi R Acc Chem Res; 2019 Sep; 52(9):2609-2619. PubMed ID: 31287291 [TBL] [Abstract][Full Text] [Related]
15. [Free oxygen radiacals and kidney diseases--part I]. Sakac V; Sakac M Med Pregl; 2000; 53(9-10):463-74. PubMed ID: 11320727 [TBL] [Abstract][Full Text] [Related]
16. How superoxide radical damages the cell. Benov L Protoplasma; 2001; 217(1-3):33-6. PubMed ID: 11732335 [TBL] [Abstract][Full Text] [Related]
17. The Haber-Weiss cycle--70 years later. Koppenol WH Redox Rep; 2001; 6(4):229-34. PubMed ID: 11642713 [TBL] [Abstract][Full Text] [Related]
18. When do metal complexes protect the biological system from superoxide toxicity and when do they enhance it? Czapski G; Goldstein S Free Radic Res Commun; 1986; 1(3):157-61. PubMed ID: 2577732 [TBL] [Abstract][Full Text] [Related]
19. Superoxide and iron: partners in crime. Liochev SI; Fridovich I IUBMB Life; 1999 Aug; 48(2):157-61. PubMed ID: 10794591 [TBL] [Abstract][Full Text] [Related]
20. Microbial inactivation by cupric ion in combination with H2O2: role of reactive oxidants. Nguyen TT; Park HJ; Kim JY; Kim HE; Lee H; Yoon J; Lee C Environ Sci Technol; 2013; 47(23):13661-7. PubMed ID: 24180265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]