These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 8902541)
1. The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress. Rainwater DT; Gossett DR; Millhollon EP; Hanna HY; Banks SW; Lucas MC Free Radic Res; 1996 Nov; 25(5):421-35. PubMed ID: 8902541 [TBL] [Abstract][Full Text] [Related]
2. Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Cervilla LM; Blasco B; Ríos JJ; Romero L; Ruiz JM Ann Bot; 2007 Oct; 100(4):747-56. PubMed ID: 17660516 [TBL] [Abstract][Full Text] [Related]
3. Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Kuzniak E; Skłodowska M Planta; 2005 Sep; 222(1):192-200. PubMed ID: 15843961 [TBL] [Abstract][Full Text] [Related]
4. Is soil contamination by a glyphosate commercial formulation truly harmless to non-target plants? - Evaluation of oxidative damage and antioxidant responses in tomato. Soares C; Pereira R; Spormann S; Fidalgo F Environ Pollut; 2019 Apr; 247():256-265. PubMed ID: 30685666 [TBL] [Abstract][Full Text] [Related]
5. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. Zhang XY; Hu CG; Yao JL J Plant Physiol; 2010 Jan; 167(2):88-94. PubMed ID: 19692145 [TBL] [Abstract][Full Text] [Related]
6. Comparative orchestrating response of four oilseed rape (Brassica napus) cultivars against the selenium stress as revealed by physio-chemical, ultrastructural and molecular profiling. Ulhassan Z; Ali S; Gill RA; Mwamba TM; Abid M; Li L; Zhang N; Zhou W Ecotoxicol Environ Saf; 2018 Oct; 161():634-647. PubMed ID: 29933133 [TBL] [Abstract][Full Text] [Related]
7. Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Jimenez A; Creissen G; Kular B; Firmin J; Robinson S; Verhoeyen M; Mullineaux P Planta; 2002 Mar; 214(5):751-8. PubMed ID: 11882944 [TBL] [Abstract][Full Text] [Related]
8. Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought-tolerant and drought-sensitive apple rootstocks. Wang S; Liang D; Li C; Hao Y; Ma F; Shu H Plant Physiol Biochem; 2012 Feb; 51():81-9. PubMed ID: 22153243 [TBL] [Abstract][Full Text] [Related]
9. Interactive effects of silicon and arbuscular mycorrhiza in modulating ascorbate-glutathione cycle and antioxidant scavenging capacity in differentially salt-tolerant Cicer arietinum L. genotypes subjected to long-term salinity. Garg N; Bhandari P Protoplasma; 2016 Sep; 253(5):1325-45. PubMed ID: 26468060 [TBL] [Abstract][Full Text] [Related]
10. New insights into cadmium stressful-conditions: Role of ethylene on selenium-mediated antioxidant enzymes. Alves LR; Rodrigues Dos Reis A; Prado ER; Lavres J; Pompeu GB; Azevedo RA; Gratão PL Ecotoxicol Environ Saf; 2019 Dec; 186():109747. PubMed ID: 31634660 [TBL] [Abstract][Full Text] [Related]
11. Changes in the Antioxidant System in Soybean Leaves Infected by Corynespora cassiicola. Fortunato AA; Debona D; Bernardeli AM; Rodrigues FÁ Phytopathology; 2015 Aug; 105(8):1050-8. PubMed ID: 25738549 [TBL] [Abstract][Full Text] [Related]
12. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. Kuzniak E; Skłodowska M J Exp Bot; 2004 Mar; 55(397):605-12. PubMed ID: 14966215 [TBL] [Abstract][Full Text] [Related]
13. Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. Mittova V; Guy M; Tal M; Volokita M J Exp Bot; 2004 May; 55(399):1105-13. PubMed ID: 15047761 [TBL] [Abstract][Full Text] [Related]
14. Effect of heat-shock induced oxidative stress is suppressed in BcZAT12 expressing drought tolerant tomato. Shah K; Singh M; Rai AC Phytochemistry; 2013 Nov; 95():109-17. PubMed ID: 23962802 [TBL] [Abstract][Full Text] [Related]
15. Involvement of anthocyanins in the resistance to chilling-induced oxidative stress in Saccharum officinarum L. leaves. Zhu JJ; Li YR; Liao JX Plant Physiol Biochem; 2013 Dec; 73():427-33. PubMed ID: 23932150 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Chugh V; Kaur N; Gupta AK Indian J Biochem Biophys; 2011 Feb; 48(1):47-53. PubMed ID: 21469602 [TBL] [Abstract][Full Text] [Related]
17. Influence of temperature on biomass, iron metabolism and some related bioindicators in tomato and watermelon plants. Rivero RM; Sánchez E; Ruiz JM; Romero L J Plant Physiol; 2003 Sep; 160(9):1065-71. PubMed ID: 14593808 [TBL] [Abstract][Full Text] [Related]
18. Differential antioxidative response of tolerant and sensitive maize (Zea mays L.) genotypes to drought stress at reproductive stage. Chugh V; Kaur N; Grewal MS; Gupta AK Indian J Biochem Biophys; 2013 Apr; 50(2):150-8. PubMed ID: 23720889 [TBL] [Abstract][Full Text] [Related]
19. Expression of rd29A::AtDREB1A/CBF3 in tomato alleviates drought-induced oxidative stress by regulating key enzymatic and non-enzymatic antioxidants. Rai GK; Rai NP; Rathaur S; Kumar S; Singh M Plant Physiol Biochem; 2013 Aug; 69():90-100. PubMed ID: 23728392 [TBL] [Abstract][Full Text] [Related]
20. Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry. Jiao H; Wang SY J Agric Food Chem; 2000 Nov; 48(11):5672-6. PubMed ID: 11087537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]