These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 8902601)

  • 1. Amelioration by cAMP of cephaloridine-induced injury in the porcine kidney cell line LLC-PK1.
    Kawai Y; Gemba M
    Jpn J Pharmacol; 1996 Sep; 72(1):67-70. PubMed ID: 8902601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective effect of a protein kinase inhibitor on cellular injury induced by cephaloridine in the porcine kidney cell line LLC-PK(1).
    Kawai Y; Kohda Y; Kodawara T; Gemba M
    J Toxicol Sci; 2005 Aug; 30(3):157-63. PubMed ID: 16141650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation by cyclic AMP and phorbol myristate acetate of cephaloridine-induced injury in rat renal cortical slices.
    Kohda Y; Gemba M
    Jpn J Pharmacol; 2001 Jan; 85(1):54-9. PubMed ID: 11243575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of oxygen radical production and lipid peroxidation in the cytotoxicity of cephaloridine on cultured renal epithelial cells (LLC-PK1).
    Kiyomiya K; Matsushita N; Matsuo S; Kurebe M
    J Vet Med Sci; 2000 Sep; 62(9):977-81. PubMed ID: 11039594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effect of serum thymic factor, FTS, on cephaloridine-induced nephrotoxicity in rats.
    Kohda Y; Matsunaga Y; Yonogi K; Kawai Y; Awaya A; Gemba M
    Biol Pharm Bull; 2005 Nov; 28(11):2087-91. PubMed ID: 16272694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia and reoxygenation-induced injury of renal epithelial cells: effect of free radical scavengers.
    Yonehana T; Gemba M
    Jpn J Pharmacol; 1995 Jun; 68(2):231-4. PubMed ID: 7563983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free radical scavengers, catalase and superoxide dismutase provide protection from oxalate-associated injury to LLC-PK1 and MDCK cells.
    Thamilselvan S; Byer KJ; Hackett RL; Khan SR
    J Urol; 2000 Jul; 164(1):224-9. PubMed ID: 10840464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LLC-PK1 epithelia as a model for in vitro assessment of proximal tubular nephrotoxicity.
    Steinmassl D; Pfaller W; Gstraunthaler G; Hoffmann W
    In Vitro Cell Dev Biol Anim; 1995 Feb; 31(2):94-106. PubMed ID: 7735573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Danofloxacin on Reactive Oxygen Species Production, Lipid Peroxidation and Antioxidant Enzyme Activities in Kidney Tubular Epithelial Cell Line, LLC-PK1.
    Yu CH; Liu ZY; Sun LS; Li YJ; Zhang DS; Pan RT; Sun ZL
    Basic Clin Pharmacol Toxicol; 2013 Dec; 113(6):377-84. PubMed ID: 23855763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ginsenoside-Rd in cephaloridine-induced renal disorder.
    Yokozawa T; Owada S
    Nephron; 1999 Feb; 81(2):200-7. PubMed ID: 9933756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo evidence suggesting a role for iron in cisplatin-induced nephrotoxicity.
    Baliga R; Zhang Z; Baliga M; Ueda N; Shah SV
    Kidney Int; 1998 Feb; 53(2):394-401. PubMed ID: 9461098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cephaloridine-induced inhibition of cytochrome c oxidase activity in the mitochondria of cultured renal epithelial cells (LLC-PK(1)) as a possible mechanism of its nephrotoxicity.
    Kiyomiya K; Matsushita N; Matsuo S; Kurebe M
    Toxicol Appl Pharmacol; 2000 Sep; 167(2):151-6. PubMed ID: 10964766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cells of proximal and distal tubular origin respond differently to challenges of oxalate and calcium oxalate crystals.
    Thamilselvan S; Hackett RL; Khan SR
    J Am Soc Nephrol; 1999 Nov; 10 Suppl 14():S452-6. PubMed ID: 10541282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclosporine A-induced toxicity in two renal cell culture models (LLC-PK1 and MDCK).
    Rezzani R; Angoscini P; Borsani E; Rodella L; Bianchi R
    Histochem J; 2002; 34(1-2):27-33. PubMed ID: 12365797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of lipid peroxidation in H2O2-induced renal epithelial (LLC-PK1) cell injury.
    Salahudeen AK
    Am J Physiol; 1995 Jan; 268(1 Pt 2):F30-8. PubMed ID: 7840245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of chloride channel inhibitors on H(2)O(2)-induced renal epithelial cell injury.
    Meng X; Reeves WB
    Am J Physiol Renal Physiol; 2000 Jan; 278(1):F83-90. PubMed ID: 10644658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of oxidant-induced lipid peroxidation in cultured renal tubular epithelial cells (LLC-PK1) by quercetin.
    Kuhlmann MK; Burkhardt G; Horsch E; Wagner M; Köhler H
    Free Radic Res; 1998 Nov; 29(5):451-60. PubMed ID: 9925038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative impact of cephaloridine on glutathione and related enzymes in LLC-PK1, LLC-RK1, and primary cultures of rat and rabbit proximal tubule cells.
    Morin JP; Marouillat S; Lendormi C; Monteil C
    Cell Biol Toxicol; 1996 Dec; 12(4-6):275-82. PubMed ID: 9034621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ameliorative effect of adenosine on hypoxia-reoxygenation injury in LLC-PK1, a porcine kidney cell line.
    Yonehana T; Gemba M
    Jpn J Pharmacol; 1999 Jun; 80(2):163-7. PubMed ID: 10440535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory effect of green tea on injury to a cultured renal epithelial cell line, LLC-PK1.
    Yokozawa T; Dong E; Chung HY; Oura H; Nakagawa H
    Biosci Biotechnol Biochem; 1997 Jan; 61(1):204-6. PubMed ID: 9028055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.