BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 8902606)

  • 1. A chaperone-like function of intramolecular high-mannose chains in the oxidative refolding of bovine pancreatic RNase B.
    Yamaguchi H; Uchida M
    J Biochem; 1996 Sep; 120(3):474-7. PubMed ID: 8902606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative refolding of bovine pancreatic RNases A and B promoted by Asn-glycans.
    Nishimura I; Uchida M; Inohana Y; Setoh K; Daba K; Nishimura S; Yamaguchi H
    J Biochem; 1998 Mar; 123(3):516-20. PubMed ID: 9538236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promotion of polypeptide folding by interactions with Asn-Glycans.
    Kimura N; Uchida M; Nishimura S; Yamaguchi H
    J Biochem; 1998 Oct; 124(4):857-62. PubMed ID: 9756634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidative folding rate of bovine pancreatic ribonuclease is enhanced by a covalently attached oligosaccharide.
    Xu G; Narayan M; Scheraga HA
    Biochemistry; 2005 Jul; 44(28):9817-23. PubMed ID: 16008366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of folding of pancreatic ribonucleases is independent of the presence of covalently linked carbohydrate.
    Grafl R; Lang K; Vogl H; Schmid FX
    J Biol Chem; 1987 Aug; 262(22):10624-9. PubMed ID: 3611084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the chaperone-like alpha-crystallin on the refolding of lysozyme and ribonuclease A.
    Raman B; Ramakrishna T; Rao CM
    FEBS Lett; 1997 Oct; 416(3):369-72. PubMed ID: 9373187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of size and location of the oligosaccharide chain on protease degradation of bovine pancreatic ribonuclease.
    Bernard BA; Newton SA; Olden K
    J Biol Chem; 1983 Oct; 258(20):12198-202. PubMed ID: 6630185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous characterization of the reductive unfolding pathways of RNase B isoforms by top-down mass spectrometry.
    Xu G; Zhai H; Narayan M; McLafferty FW; Scheraga HA
    Chem Biol; 2004 Apr; 11(4):517-24. PubMed ID: 15123246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of RNase A refolding intermediates by electrospray/mass spectrometry.
    Torella C; Ruoppolo M; Marino G; Pucci P
    FEBS Lett; 1994 Oct; 352(3):301-6. PubMed ID: 7925990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structural basis of the difference in sensitivity for PNGase F in the de-N-glycosylation of the native bovine pancreatic ribonucleases B and BS.
    Blanchard V; Frank M; Leeflang BR; Boelens R; Kamerling JP
    Biochemistry; 2008 Mar; 47(11):3435-46. PubMed ID: 18293928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms.
    Shimotakahara S; Rios CB; Laity JH; Zimmerman DE; Scheraga HA; Montelione GT
    Biochemistry; 1997 Jun; 36(23):6915-29. PubMed ID: 9188686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic folding pathway of a three-disulfide mutant of bovine pancreatic ribonuclease A missing the [40-95] disulfide bond.
    Xu X; Scheraga HA
    Biochemistry; 1998 May; 37(20):7561-71. PubMed ID: 9585571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of glutaredoxin and protein disulfide isomerase on the glutathione-dependent folding of ribonuclease A.
    Ruoppolo M; Lundström-Ljung J; Talamo F; Pucci P; Marino G
    Biochemistry; 1997 Oct; 36(40):12259-67. PubMed ID: 9315864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers.
    Ahmed AK; Schaffer SW; Wetlaufer DB
    J Biol Chem; 1975 Nov; 250(21):8477-82. PubMed ID: 1194263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilarity in the oxidative folding of onconase and ribonuclease A, two structural homologues.
    Gahl RF; Narayan M; Xu G; Scheraga HA
    Protein Eng Des Sel; 2008 Apr; 21(4):223-31. PubMed ID: 18245105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural study of the carbohydrate moiety of bovine pancreatic ribonuclease B.
    Liang CJ; Yamashita K; Kobata A
    J Biochem; 1980 Jul; 88(1):51-8. PubMed ID: 7410340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin.
    Rodan AR; Simons JF; Trombetta ES; Helenius A
    EMBO J; 1996 Dec; 15(24):6921-30. PubMed ID: 9003768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of glycosylation on the in vivo circulating half-life of ribonuclease.
    Baynes JW; Wold F
    J Biol Chem; 1976 Oct; 251(19):6016-24. PubMed ID: 972151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A.
    Dodge RW; Scheraga HA
    Biochemistry; 1996 Feb; 35(5):1548-59. PubMed ID: 8634286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.