These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 8902808)
1. Identification of cis-acting elements as DNase I hypersensitive sites in lysozyme gene chromatin. Sippel AE; Saueressig H; Huber MC; Hoefer HC; Stief A; Borgmeyer U; Bonifer C Methods Enzymol; 1996; 274():233-46. PubMed ID: 8902808 [TBL] [Abstract][Full Text] [Related]
2. Dynamic changes in the chromatin of the chicken lysozyme gene domain during differentiation of multipotent progenitors to macrophages. Huber MC; Graf T; Sippel AE; Bonifer C DNA Cell Biol; 1995 May; 14(5):397-402. PubMed ID: 7748489 [TBL] [Abstract][Full Text] [Related]
3. The mouse M-lysozyme gene domain: identification of myeloid and differentiation specific DNasel hypersensitive sites and of a 3'-cis acting regulatory element. Möllers B; Klages S; Wedel A; Cross M; Spooncer E; Dexter TM; Renkawitz R Nucleic Acids Res; 1992 Apr; 20(8):1917-24. PubMed ID: 1579493 [TBL] [Abstract][Full Text] [Related]
4. The developmental activation of the chicken lysozyme locus in transgenic mice requires the interaction of a subset of enhancer elements with the promoter. Huber MC; Jägle U; Krüger G; Bonifer C Nucleic Acids Res; 1997 Aug; 25(15):2992-3000. PubMed ID: 9224598 [TBL] [Abstract][Full Text] [Related]
5. Alternative sets of DNase I-hypersensitive sites characterize the various functional states of the chicken lysozyme gene. Fritton HP; Igo-Kemenes T; Nowock J; Strech-Jurk U; Theisen M; Sippel AE Nature; 1984 Sep 13-19; 311(5982):163-5. PubMed ID: 6236374 [TBL] [Abstract][Full Text] [Related]
6. Nuclease-hypersensitive sites in the chromatin domain of the chicken lysozyme gene. Fritton HP; Sippel AE; Igo-Kemenes T Nucleic Acids Res; 1983 Jun; 11(11):3467-85. PubMed ID: 6304632 [TBL] [Abstract][Full Text] [Related]
7. Chromosomal position effects in chicken lysozyme gene transgenic mice are correlated with suppression of DNase I hypersensitive site formation. Huber MC; Bosch FX; Sippel AE; Bonifer C Nucleic Acids Res; 1994 Oct; 22(20):4195-201. PubMed ID: 7937145 [TBL] [Abstract][Full Text] [Related]
8. Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene. Lu Q; Wallrath LL; Allan BD; Glaser RL; Lis JT; Elgin SC J Mol Biol; 1992 Jun; 225(4):985-98. PubMed ID: 1377279 [TBL] [Abstract][Full Text] [Related]
10. Long-range chromatin analysis of the human MYC locus by pulsed-field gel electrophoresis. Mautner J; Bornkamm GW; Polack A Genes Chromosomes Cancer; 1996 Aug; 16(4):247-53. PubMed ID: 8875238 [TBL] [Abstract][Full Text] [Related]
11. Analysis of DNase I-hypersensitive sites in the chromatin of the chicken C/EBPbeta gene reveals multiple cis-regulatory elements. Kintscher J; Miethe J; Klempnauer KH DNA Cell Biol; 2003 Mar; 22(3):201-8. PubMed ID: 12804118 [TBL] [Abstract][Full Text] [Related]
12. Advances of DNase-seq for mapping active gene regulatory elements across the genome in animals. Chen A; Chen D; Chen Y Gene; 2018 Aug; 667():83-94. PubMed ID: 29772251 [TBL] [Abstract][Full Text] [Related]
13. In vivo analysis of chromatin structure. Zaret KS Methods Enzymol; 1999; 304():612-26. PubMed ID: 10372385 [No Abstract] [Full Text] [Related]
14. Analysis of DNase I-hypersensitive sites in the chromatin of the chicken adenosine receptor 2B gene reveals multiple cell-type-specific cis-regulatory elements. Braas D; Kattmann D; Miethe J; Klempnauer KH Gene; 2003 Jan; 303():157-64. PubMed ID: 12559577 [TBL] [Abstract][Full Text] [Related]
15. DNase I-hypersensitive sites in the chromatin structure of the lysozyme gene in steroid hormone target and non-target cells. Fritton HP; Igo-Kemenes T; Nowock J; Strech-Jurk U; Theisen M; Sippel AE Biol Chem Hoppe Seyler; 1987 Feb; 368(2):111-9. PubMed ID: 3566913 [TBL] [Abstract][Full Text] [Related]
16. Genomic position effects lead to an inefficient reorganization of nucleosomes in the 5'-regulatory region of the chicken lysozyme locus in transgenic mice. Huber MC; Krüger G; Bonifer C Nucleic Acids Res; 1996 Apr; 24(8):1443-52. PubMed ID: 8628676 [TBL] [Abstract][Full Text] [Related]
17. Chromatin domains constitute regulatory units for the control of eukaryotic genes. Sippel AE; Schäfer G; Faust N; Saueressig H; Hecht A; Bonifer C Cold Spring Harb Symp Quant Biol; 1993; 58():37-44. PubMed ID: 7956050 [No Abstract] [Full Text] [Related]
19. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Sabo PJ; Kuehn MS; Thurman R; Johnson BE; Johnson EM; Cao H; Yu M; Rosenzweig E; Goldy J; Haydock A; Weaver M; Shafer A; Lee K; Neri F; Humbert R; Singer MA; Richmond TA; Dorschner MO; McArthur M; Hawrylycz M; Green RD; Navas PA; Noble WS; Stamatoyannopoulos JA Nat Methods; 2006 Jul; 3(7):511-8. PubMed ID: 16791208 [TBL] [Abstract][Full Text] [Related]
20. Molecular cloning and chromatin structure analysis of the murine alpha1(I) collagen gene domain. Salimi-Tari P; Cheung M; Safar CA; Tracy JT; Tran I; Harbers K; Breindl M Gene; 1997 Oct; 198(1-2):61-72. PubMed ID: 9370265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]